Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Transmembrane alpha-helices in integral membrane proteins are recognized co-translationally and inserted into the membrane of the endoplasmic reticulum by the Sec61 translocon. A full quantitative description of this phenomenon, linking amino acid sequence to membrane insertion efficiency, is still lacking. Here, using in vitro translation of a model protein in the presence of dog pancreas rough microsomes to analyse a large number of systematically designed hydrophobic segments, we present a quantitative analysis of the position-dependent contribution of all 20 amino acids to membrane insertion efficiency, as well as of the effects of transmembrane segment length and flanking amino acids. The emerging picture of translocon-mediated transmembrane helix assembly is simple, with the critical sequence characteristics mirroring the physical properties of the lipid bilayer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature06387 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!