The functional geometry of the reconstructed dendritic arborization of Purkinje neurons is the object of this work. The combined effects of the local geometry of the dendritic branches and of the membrane mechanisms are computed in passive configuration to obtain the electrotonic structure of the arborization. Steady-currents applied to the soma and expressed as a function of the path distance from the soma form different clusters of profiles in which dendritic branches are similar in voltages and current transfer effectiveness. The locations of the different clusters are mapped on the dendrograms and 3D representations of the arborization. It reveals the presence of different spatial dendritic sectors clearly separated in 3D space that shape the arborization in ordered electrical domains, each with similar passive charge transfer efficiencies. Further simulations are performed in active configuration with a realistic cocktail of conductances to find out whether similar spatial domains found in the passive model also characterize the active dendritic arborization. During tonic activation of excitatory synaptic inputs homogeneously distributed over the whole arborization, the Purkinje cell generates regular oscillatory potentials. The temporal patterns of the electrical oscillations induce similar spatial sectors in the arborization as those observed in the passive electrotonic structure. By taking a video of the dendritic maps of the membrane potentials during a single oscillation, we demonstrate that the functional dendritic field of a Purkinje neuron displays dynamic changes which occur in the spatial distribution of membrane potentials in the course of the oscillation. We conclude that the branching pattern of the arborization explains such continuous reconfiguration and discuss its functional implications.

Download full-text PDF

Source

Publication Analysis

Top Keywords

arborization
8
dendritic arborization
8
arborization purkinje
8
dendritic branches
8
electrotonic structure
8
domains passive
8
membrane potentials
8
dendritic
7
electro-dynamics dendritic
4
dendritic space
4

Similar Publications

Rapamycin, also known as sirolimus, has demonstrated great potential for application in longevity medicine. However, the dynamics of low-dose rapamycin bioavailability, and any differences in bioavailability for different formulations (e.g.

View Article and Find Full Text PDF

Purpose Of Review: Trigeminal neuralgia (TN) is a highly heterogeneous condition with a wide choice of successful treatment options. However, differences between subtypes are poorly understood and it remains unknown which patients will respond to different treatments. This review aims to summarize the current state of the TN field and explore the problem of predicting surgical outcomes.

View Article and Find Full Text PDF

Linn., commonly known as the 'Tree of Sadness' belongs to Oleaceae family. In Ayurvedic, Siddha, Unani, and Homeopathic therapeutic systems, it has been used to treat various conditions, including ulcers, skin diseases, hair loss, piles, liver diseases, rheumatism, and malarial fevers.

View Article and Find Full Text PDF

Restoring ceftolozane susceptibility: a role for diazabicyclooctane β-lactamase inhibitors?

Antimicrob Agents Chemother

January 2025

Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

Paired baseline and post-exposure isolates from 34 patients who developed ceftolozane-tazobactam (TOL-TAZ) resistance following treatment of multidrug-resistant (MDR) infections were analyzed to determine if ceftolozane with an alternative β-lactamase inhibitor could restore susceptibility. The median baseline TOL-TAZ MIC was 2 mg/L; 88% of post-exposure isolates harbored new mutations. Median MIC fold-increase from baseline was 32-, 24-, 16-, and 6-fold for ceftolozane-tazobactam, ceftolozane-avibactam (AVI), ceftolozane-relebactam (REL), and ceftolozane-durlobactam (DUR), respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!