Morphological correlations of functional regulation of oxygen consumption have been investigated in single of isolated crustacean stretch receptor neuron. The increase in oxygen consumption is promoted by: 1) redistribution of mitochondria and increase in cytochrome oxidase (CO) activity in mitochondria near to the plasmatic membrane; 2) coordination of mitochondria aggregation rhythms with pO2 rhythms in external environment of a cell; 3) reduction of the area with high CO and mitochondria activity, and reduction of the way of oxygen diffusion; 4) increase in CO activity gradient from periphery to the center of the neuron body; 5) carry of oxygen by water current under hydration of the neuron body, and cytoplasm dilution under transition of a part of gel in sol; 6) cyclic changes in the neuron body and hillock sizes ratio determining carry of oxygen by water current into the neuron body, oxygen absorption by mitochondria in the neuron body, and transition of the water released from oxygen from the neuron body into hillock and further into the external environment.

Download full-text PDF

Source

Publication Analysis

Top Keywords

neuron body
24
oxygen consumption
12
oxygen
8
regulation oxygen
8
external environment
8
carry oxygen
8
oxygen water
8
water current
8
body hillock
8
neuron
7

Similar Publications

Prediction of dry matter intake in growing Black Bengal goats using artificial neural networks.

Trop Anim Health Prod

January 2025

Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India.

Dry matter intake (DMI) determination is essential for effective management of meat goats, especially in optimizing feed utilization and production efficiency. Unfortunately, farmers often face challenges in accurately predicting DMI which leads to wastage of feed and an increase in the cost of production. This investigation aimed to predict DMI in Black Bengal goats by using body weight (BW), body condition score (BCS), average daily gain (ADG), and metabolic body weight (MBW) by applying an artificial neural network (ANN) model.

View Article and Find Full Text PDF

Distribution analysis of RAB11A and RAB11B, small GTP-binding proteins, in mice.

Mol Biol Rep

January 2025

Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, 486-0392, Japan.

Background: RAB11 is a small GTP-binding protein that regulates intracellular trafficking of recycling endosomes and is thereby involved in several neural functions. Highly similar RAB11 isoforms are encoded by RAB11A and RAB11B genes, and their pathogenic variants are associated with similar neurodevelopmental disorders, suggesting that RAB11A and RAB11B play similar and important roles in brain development. However, the detailed distribution patterns of these isoforms in various organs, including the brain, remain undetermined.

View Article and Find Full Text PDF

The neurological implications of micro- and nanoplastic exposure have recently come under scrutiny due to the environmental prevalence of these synthetic materials. Parkinson's disease (PD) is a major neurological disorder clinically characterized by intracellular Lewy-body inclusions and dopaminergic neuronal death. These pathological hallmarks of PD, according to Braak's hypothesis, are mediated by the afferent propagation of α synuclein (αS) via the enteric nervous system, or the so-called gut-brain axis.

View Article and Find Full Text PDF

Dopamine can play opposing physiological roles depending on the receptor subtype. In the fruit fly , and encode the D- and D-like receptors, respectively, and are reported to oppositely regulate intracellular cAMP levels. Here, we profiled the expression and subcellular localization of endogenous Dop1R1 and Dop2R in specific cell types in the mushroom body circuit.

View Article and Find Full Text PDF

Background: Datura metel is reported to induce hallucinations and mental disorders.

Objective: This study investigates the neurotoxic effects of stramonium hydroethanolic root extract on the hippocampus and cerebral cortex of adult rats using biochemical, histological and immunohistochemical techniques.

Methodology: Twenty five adult rats were assigned to 5 groups (n = 5 each).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!