A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Clade-specific differences in neurotoxicity of human immunodeficiency virus-1 B and C Tat of human neurons: significance of dicysteine C30C31 motif. | LitMetric

AI Article Synopsis

  • HIV-1 can lead to cognitive impairment and dementia, with the viral protein Tat linked to neuronal death, particularly in clade B compared to clade C.
  • Researchers studied the effects of B- and C-Tat on human neurons, finding that C-Tat is less neurotoxic than B-Tat, potentially due to differences in a specific region of the protein.
  • The study highlights the varying neurotoxic effects of different HIV-1 clades, suggesting future research with patient samples is needed to confirm these findings.

Article Abstract

Objective: Human immunodeficiency virus-1 (HIV-1) causes mild to severe cognitive impairment and dementia. The transactivator viral protein, Tat, is implicated in neuronal death responsible for neurological deficits. Several clades of HIV-1 are unequally distributed globally, of which HIV-1 B and C together account for the majority of the viral infections. HIV-1-related neurological deficits appear to be most common in clade B, but not clade C prevalent areas. Whether clade-specific differences translate to varied neuropathogenesis is not known, and this uncertainty warrants an immediate investigation into neurotoxicity on human neurons of Tat derived from different viral clades

Methods: We used human fetal central nervous system progenitor cell-derived astrocytes and neurons to investigate effects of B- and C-Tat on neuronal cell death, chemokine secretion, oxidative stress, and mitochondrial membrane depolarization by direct and indirect damage to human neurons. We used isogenic variants of Tat to gain insights into the role of the dicysteine motif (C30C31) for neurotoxic potential of Tat

Results: Our results suggest clade-specific functional differences in Tat-induced apoptosis in primary human neurons. This study demonstrates that C-Tat is relatively less neurotoxic compared with B-Tat, probably as a result of alteration in the dicysteine motif within the neurotoxic region of B-Tat

Interpretation: This study provides important insights into differential neurotoxic properties of B- and C-Tat, and offers a basis for distinct differences in degree of HIV-1-associated neurological deficits observed in patients in India. Additional studies with patient samples are necessary to validate these findings.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.21292DOI Listing

Publication Analysis

Top Keywords

human neurons
16
neurological deficits
12
clade-specific differences
8
neurotoxicity human
8
human immunodeficiency
8
immunodeficiency virus-1
8
dicysteine motif
8
human
7
neurons
5
differences neurotoxicity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!