The imaging of brain haemodynamics and its applications are generating growing interest. By providing quantitative measurements of cerebral blood flow (CBF) and cerebral blood volume (CBV), dynamic perfusion computed tomography (p-CT) allows visualisation of cerebral autoregulation mechanisms and represents a fast, available and reliable imaging option for assessing cerebral perfusion. Thanks to its feasibility in emergency settings, p-CT is considered most useful, in combination with CT angiography, in acute ischaemic patients, as it is able to provide a fast and noninvasive assessment of cerebral perfusion impairment. In addition, p-CT can play a diagnostic role in other types of cerebrovascular disease to assess functional reserve, and in intracranial neoplasms, where it has a role in diagnosis, grading, biopsy guidance, and follow-up during treatment. This article illustrates the principles, technique and clinical applications of p-CT cerebral perfusion studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11547-007-0219-4 | DOI Listing |
Sci Rep
December 2024
Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA.
Heart transplantation remains the ultimate treatment strategy for neonates and children with medically refractory end-stage heart failure and utilization of donors after circulatory death (DCD) can expand th donor pool. We have previously shown that mitochondrial transplantation preserves myocardial function and viability in neonatal swine DCD hearts to levels similar to that observed in donation after brain death (DBD). Herein, we sought to investigate the transcriptomic and proteomic pathways implicated in these phenotypic changes using ex situ perfused swine hearts.
View Article and Find Full Text PDFNeurol Int
November 2024
Department of Radiology, Section Neuroradiology, Lucerne Cantonal Hospital, 6000 Lucerne, Switzerland.
Objectives: Blood pressure (BP) management is challenging in patients with acute ischemic supratentorial stroke undergoing recanalization therapy due to the lack of established guidelines. Assessing dynamic cerebral autoregulation (dCA) may address this need, as it is a bedside technique that evaluates the transfer function phase in the very low-frequency (VLF) range (0.02-0.
View Article and Find Full Text PDFTransplantation
December 2024
Division of Transplant Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, Maryland.
Background: Machine perfusion (MP) for liver transplantation has become more widespread in the United States, but national studies on this growing practice are lacking. We investigated national use and outcomes of MP for liver transplantation.
Methods: Adult (≥18 y) liver recipients transplanted between January 1, 2016 and September 30, 2023 in the United Network for Organ Sharing database were included.
Ann Neurol
December 2024
Department of Neurology, Seoul National University Bundang Hospital, Seongnam-si, South Korea.
Objective: Computed tomography perfusion (CTP) imaging is crucial in quantifying cerebral blood flow (CBF) and thereby making an endovascular treatment (EVT) after large vessel occlusion. However, CTP is prone to overestimating the ischemic core. We sought to delineate the optimal regional CBF (rCBF) thresholds of pre-EVT CTP.
View Article and Find Full Text PDFJ Neurotrauma
December 2024
Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden.
This study compared the roles of extraparenchymal autonomic nervous system (ANS) control of cerebral blood flow (CBF) versus intraparenchymal cerebrovascular autoregulation in 487 patients with aneurysmal subarachnoid hemorrhage (SAH) and 413 patients with traumatic brain injury (TBI). Vasomotion intensity of extraparenchymal and intraparenchymal vessels were quantified as the amplitude of oscillations of arterial blood pressure (ABP) and intracranial pressure (ICP) in the very low frequency range of 0.02-0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!