Photodynamic therapy (PDT) for the treatment of prostate cancer has been demonstrated to be a safe treatment option capable of inducing tissue destruction and decreasing prostate specific antigen (PSA) levels. However, prostate-PDT results in large intra- and interpatient variations in treatment response, possibly due to biological variations in tissue composition and short-term response to the therapeutic irradiation. Within our group, an instrument for interstitial PDT on prostate tissue has been developed that combines therapeutic light delivery and monitoring of light transmission via numerous bare-ended optical fibers. Here, we present algorithms that utilize data on the light distribution within the target tissue to provide realtime treatment feedback based on a light dose threshold model for PDT. This realtime dosimetry module is implemented to individualize the light dose and compensate for any treatment-induced variations in light attenuation. More specifically, based on the light transmission signals between treatment fibers, spatially resolved spectroscopy is utilized to assess the effective attenuation coefficient of the tissue. These data constitute input to a block-Cimmino optimization algorithm, employed to calculate individual fiber irradiation times provided the requirement to deliver a predetermined light dose to the target tissue while sparing surrounding sensitive organs. By repeatedly monitoring the light transmission signals during the entire treatment session, optical properties and individual fiber irradiation times are updated in realtime. The functionality of the algorithms is tested on diffuse light distribution data simulated by means of the finite element method (FEM). The feasibility of utilizing spatially resolved spectroscopy within heterogeneous media such as the prostate gland is discussed. Furthermore, we demonstrate the ability of the block-Cimmino algorithm to discriminate between target tissue and organs at risk (OAR). Finally, the realtime dosimetry module is evaluated for treatment scenarios displaying spatially and temporally varying light attenuation levels within the target tissue. We conclude that the realtime dosimetry module makes it possible to deliver a certain light dose to the target tissue despite spatial and temporal variations of the target tissue optical properties at the therapeutic wavelength.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1118/1.2790585 | DOI Listing |
Front Med
January 2025
Guizhou University Medical College, Guiyang, 550025, China.
The p60 subunit of the chromatin assembly factor-1 complex, that is, chromatin assembly factor-1 subunit B (CHAF1B), is a histone H3/H4 chaperone crucial for the transcriptional regulation of cell differentiation and self-renewal. CHAF1B is overexpressed in several cancers and may represent a potential target for cancer therapy. However, its expression and clinical significance in lung squamous-cell carcinoma (LUSC) remain unclear.
View Article and Find Full Text PDFJ Mol Neurosci
January 2025
Lanzhou University Second Hospital, The Second Medical College of Lanzhou University, Cuiyingmen No.82, Chengguan District, Lanzhou, 730030, China.
Ischemic stroke leads to permanent damage to the affected brain tissue, with strict time constraints for effective treatment. Predictive biomarkers demonstrate great potential in the clinical diagnosis of ischemic stroke, significantly enhancing the accuracy of early identification, thereby enabling clinicians to intervene promptly and reduce patient disability and mortality rates. Furthermore, the application of predictive biomarkers facilitates the development of personalized treatment plans tailored to the specific conditions of individual patients, optimizing treatment outcomes and improving prognoses.
View Article and Find Full Text PDFCurr Rheumatol Rep
January 2025
Department of Rheumatology, Flinders Medical Centre, Adelaide, SA, Australia.
Purpose Of Review: Rheumatoid arthritis (RA) is a complex autoimmune disease characterized by chronic inflammation of the synovial tissue, where T cells play a central role in pathogenesis. Recent research has identified T peripheral helper (Tph) cells as critical mediators of local B cell activation in inflamed tissues. This review synthesizes the latest advancements in our understanding the of the role of T cells in RA, from initiation to established disease.
View Article and Find Full Text PDFAmino Acids
January 2025
Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
In recent years, the use of cationic peptides as alternative drugs with anticancer activity has received attention. In this study, the targeted release of curcumin (Cur) and CM11 peptide alone and together against hepatocellular carcinoma (HCC) was evaluated using chitosan nanoparticles (CS NPs) coated with Pres1 that target the SB3 antigen of HCC cells (PreS1-Cur-CM11-CS NPs). SB3 protein is the specific antigen of HCC and the PreS1 peptide is a part of the hepatitis B antigen, which can specifically bind to the SB3 protein.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA.
Background: Sepsis-associated encephalopathy (SAE) often results from neuroinflammation. Recent studies have shown that brain platelet-derived growth factor receptor β (PDGFRβ) cells, including pericytes, may act as early sensors of infection by secreting monocyte chemoattractant protein-1 (MCP-1), which transmits inflammatory signals to the central nervous system. The erythroblast transformation-specific (ETS) transcription factor Friend leukemia virus integration 1 (Fli-1) plays a critical role in inflammation by regulating the expression of key cytokines, including MCP-1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!