Digitally rendered radiographs (DRR) are a vital part of various medical image processing applications such as 2D/3D registration for patient pose determination in image-guided radiotherapy procedures. This paper presents a technique to accelerate DRR creation by using conventional graphics hardware for the rendering process. DRR computation itself is done by an efficient volume rendering method named wobbled splatting. For programming the graphics hardware, NVIDIAs C for Graphics (Cg) is used. The description of an algorithm used for rendering DRRs on the graphics hardware is presented, together with a benchmark comparing this technique to a CPU-based wobbled splatting program. Results show a reduction of rendering time by about 70%-90% depending on the amount of data. For instance, rendering a volume of 2 x 10(6) voxels is feasible at an update rate of 38 Hz compared to 6 Hz on a common Intel-based PC using the graphics processing unit (GPU) of a conventional graphics adapter. In addition, wobbled splatting using graphics hardware for DRR computation provides higher resolution DRRs with comparable image quality due to special processing characteristics of the GPU. We conclude that DRR generation on common graphics hardware using the freely available Cg environment is a major step toward 2D/3D registration in clinical routine.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.2789500DOI Listing

Publication Analysis

Top Keywords

graphics hardware
24
wobbled splatting
12
graphics
9
2d/3d registration
8
conventional graphics
8
drr computation
8
rendering
6
hardware
6
drr
5
fast drr
4

Similar Publications

Posttraining Network Compression for 3D Medical Image Segmentation: Reducing Computational Efforts via Tucker Decomposition.

Radiol Artif Intell

January 2025

From the Department of Radiology, University Hospital, LMU Munich, Marchioninistr 15,81377 Munich, Germany (T.W., J.D., M.I.); Department of Statistics, LMU Munich, Munich, Germany (T.W., D.R.); and Munich Center for Machine Learning, Munich, Germany (T.W., J.D., D.R., M.I.).

Purpose To investigate whether the computational effort of 3D CT-based multiorgan segmentation with TotalSegmentator can be reduced via Tucker decomposition-based network compression. Materials and Methods In this retrospective study, Tucker decomposition was applied to the convolutional kernels of the TotalSegmentator model, an nnU-Net model trained on a comprehensive CT dataset for automatic segmentation of 117 anatomic structures. The proposed approach reduced the floating-point operations (FLOPs) and memory required during inference, offering an adjustable trade-off between computational efficiency and segmentation quality.

View Article and Find Full Text PDF

Motivation: Predicting RNA-binding proteins (RBPs) is central to understanding post-transcriptional regulatory mechanisms. Here, we introduce EnrichRBP, an automated and interpretable computational platform specifically designed for the comprehensive analysis of RBP interactions with RNA.

Results: EnrichRBP is a web service that enables researchers to develop original deep learning and machine learning architectures to explore the complex dynamics of RNA-binding proteins.

View Article and Find Full Text PDF

An Analysis of Components and Enhancement Strategies for Advancing Memristive Neural Networks.

Adv Mater

January 2025

Department of Materials Science and Engineering and Inter-University Semiconductor Research Center, Seoul National University, Seoul, 08826, Republic of Korea.

Advancements in artificial intelligence (AI) and big data have highlighted the limitations of traditional von Neumann architectures, such as excessive power consumption and limited performance improvement with increasing parameter numbers. These challenges are significant for edge devices requiring higher energy and area efficiency. Recently, many reports on memristor-based neural networks (Mem-NN) using resistive switching memory have shown efficient computing performance with a low power requirement.

View Article and Find Full Text PDF

The steady state of a water distribution system abides by the laws of mass and energy conservation. Hydraulic solvers, such as the one used by EPANET approach the simulation for a given topology with a Newton-Raphson algorithm. However, iterative approximation involves a matrix inversion which acts as a computational bottleneck and may significantly slow down the process.

View Article and Find Full Text PDF

An approach for load frequency control enhancement in two-area hydro-wind power systems using LSTM + GA-PID controller with augmented lagrangian methods.

Sci Rep

January 2025

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.

This paper proposes an advanced Load Frequency Control (LFC) strategy for two-area hydro-wind power systems, using a hybrid Long Short-Term Memory (LSTM) neural network combined with a Genetic Algorithm-optimized PID (GA-PID) controller. Traditional PID controllers, while extensively used, often face limitations in handling the nonlinearities and uncertainties inherent in interconnected power systems, leading to slower settling time and higher overshoot during load disturbances. The LSTM + GA-PID controller mitigates these issues by utilizing LSTM's capacity to learn from historical data by using gradient descent to forecast the future disturbances, while the GA optimizes the PID parameters in real time, ensuring dynamic adaptability and improved control precision.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!