We demonstrate efficient frequency tripling of 1057-chirped pulses, using adapted chirping and thick KDP crystals. These millijoules broadband pulses at 352 nm have been compressed to 220-fs duration by use of a UV grating-pair compressor. The technique is scalable to kilojoule petatwatt lasers.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.24.000354DOI Listing

Publication Analysis

Top Keywords

efficient frequency
8
frequency tripling
8
ultrashort intense
4
intense ultraviolet
4
ultraviolet pulse
4
pulse generation
4
generation efficient
4
tripling adapted
4
adapted phase
4
phase matching
4

Similar Publications

What is wrong with the peer review system? Is peer review sustainable? Useful? What other models exist? These are central yet contentious questions in today's academic discourse. This perspective critically discusses alternative models and revisions to the peer review system. The authors highlight possible changes to the peer review system, with the goal of fostering further dialog among the main stakeholders, including producers and consumers of scientific research.

View Article and Find Full Text PDF

Monolithic Multiparameter Terahertz Nano/Microdetector Based on Plasmon Polariton Atomic Cavity.

Adv Mater

January 2025

State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China.

Terahertz (THz) signals are crucial for ultrawideband communication and high-resolution radar, demanding miniaturized detectors that can simultaneously measure multiple parameters such as intensity, frequency, polarization, and phase. Traditional detectors fail to meet these needs. To address this, we introduce a plasmon polariton atomic cavity (PPAC) detector based on monolayer graphene, offering a multifunctional, monolithic, and miniaturized solution.

View Article and Find Full Text PDF

This study combines experimental techniques and mathematical modeling to investigate the dynamics of C. elegans body-wall muscle cells. Specifically, by conducting voltage clamp and mutant experiments, we identify key ion channels, particularly the L-type voltage-gated calcium channel (EGL-19) and potassium channels (SHK-1, SLO-2), which are crucial for generating action potentials.

View Article and Find Full Text PDF

Waterborne bacteria pose a serious hazard to human health, hence a precise detection method is required to identify them. A photonic crystal fiber sensor that takes into account the dangers of aquatic bacteria has been suggested, and its optical characteristics in the THz range have been quantitatively assessed. The PCF sensor was designed and examined as computed in Comsol Multiphysics, a program in which uses the method of "Finite Element Method" (FEM).

View Article and Find Full Text PDF

Artificial neurons with bio-inspired firing patterns have the potential to significantly improve the performance of neural network computing. The most significant component of an artificial neuron circuit is a large amount of energy consumption. Recent literature has proposed memristors as a promising option for synaptic implementation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!