The geometrical structure and stability of neutral pi-conjugated C4H4N. with three spin states were investigated by using ab initio and density functional theory (DFT) methods. In addition, the linear and nonlinear optical properties were studied at the same level combined with the finite field approach. The calculated results show that conjugation and stability decreased with increasing spin multiplicity. These reliable UCCSD results show that the polarizability (alpha) values of C4H4N. with the quartet state are maximal, while those of C4H4N. with the doublet state are minimal. The order of betatot values is betasextet > betadoublet > betaquartet. The second hyperpolarizability (gamma) values exhibit positive values. The variation trends of gamma are consistent with alpha.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp073907t | DOI Listing |
J Chem Theory Comput
January 2025
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
X-ray absorption spectroscopy (XAS) is a powerful method for exploring molecular electronic structure by exciting core electrons into higher unoccupied molecular orbitals. In this study, we present the first integration of the spin-unrestricted similarity-transformed equation-of-motion coupled cluster method (CVS-USTEOM-CCSD) for core-excited and core-ionized states into the ORCA quantum chemistry package. Using the core-valence separation (CVS) approach, we evaluate the accuracy of CVS-USTEOM-CCSD across 13 open-shell organic systems, covering over 20 core excitations with diverse spin multiplicities (doublet, triplet, and quartet).
View Article and Find Full Text PDFJ Comput Chem
January 2025
RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.
QCforever is a wrapper designed to automatically and simultaneously calculate various physical quantities using quantum chemical (QC) calculation software for blackbox optimization in chemical space. We have updated it to QCforever2 to search the conformation and optimize density functional parameters for a more accurate and reliable evaluation of an input molecule. In blackbox optimization, QCforever2 can work as compactly arranged surrogate models for costly chemical experiments.
View Article and Find Full Text PDFNanoscale
January 2025
Technical University of Darmstadt, Eduard-Zintl-Institute, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany.
The magnetic behavior of endohedrally transition-metal-doped tetrel clusters SnTM (TM = Cr, Mn, Fe) was investigated using a combined experimental and theoretical approach. Based on an improved experimental setup, the magnetic deflection was measured over a wide temperature range of = 16-240 K. From a Curie analysis of the experimentally observed single-sided shift at high nozzle temperatures, the spin multiplicities and -factors were determined.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
HUN-REN Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary.
J Comput Chem
January 2025
Department of Chemistry, Birla Institute of Technology Mesra, Ranchi, India.
Accurate prediction of physicochemical properties, such as electronic energy, enthalpy, free energy, and average vibrational frequencies, is critical for optimizing lithium-ion battery (LIB) performance. Traditional methods like density functional theory (DFT) are computationally expensive and inefficient for large-scale screening. In this study, we apply active learning on top of graph neural networks (GNNs) to efficiently predict these properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!