The generation of ab initio three-dimensional (3D) models is a bottleneck in the studies of large macromolecular assemblies by single-particle cryo-electron microscopy. We describe here a novel method, in which established methods for two-dimensional image processing are combined with newly developed programs for joint rotational 3D alignment of a large number of class averages (RAD) and calculation of 3D volumes from aligned projections (VolRec). We demonstrate the power of the method by reconstructing an approximately 660-kDa ATP-fueled AAA+ motor to 7.5 A resolution, with secondary structure elements identified throughout the structure. We propose the method as a generally applicable automated strategy to obtain 3D reconstructions from unstained single particles imaged in vitreous ice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2007.11.028 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!