Hedgehog signaling is an important component of cell-cell communication during bilaterian development, and abnormal Hedgehog signaling contributes to disease and birth defects. Hedgehog genes are composed of a ligand ("hedge") domain and an autocatalytic intein ("hog") domain. Hedgehog (hh) ligands bind to a conserved set of receptors and activate downstream signal transduction pathways terminating with Gli/Ci transcription factors. We have identified five intein-containing genes in the anthozoan cnidarian Nematostella vectensis, two of which (NvHh1 and NvHh2) contain definitive hedgehog ligand domains, suggesting that to date, cnidarians are the earliest branching metazoan phylum to possess definitive Hh orthologs. Expression analysis of NvHh1 and NvHh2, the receptor NvPatched, and a downstream transcription factor NvGli (a Gli3/Ci ortholog) indicate that these genes may have conserved roles in planar and trans-epithelial signaling during gut and germline development, while the three remaining intein-containing genes (NvHint1,2,3) are expressed in a cell-type-specific manner in putative neural precursors. Metazoan intein-containing genes that lack a hh ligand domain have previously only been identified within nematodes. However, we have identified intein-containing genes from both Nematostella and in two newly annotated lophotrochozoan genomes. Phylogenetic analyses suggest that while nematode inteins may be derived from an ancestral true hedgehog gene, the newly identified cnidarian and lophotrochozoan inteins may be orthologous, suggesting that both true hedgehog and hint genes may have been present in the cnidarian-bilaterian ancestor. Genomic surveys of N. vectensis suggest that most of the components of both protostome and deuterostome Hh signaling pathways are present in anthozoans and that some appear to have been lost in ecdysozoan lineages. Cnidarians possess many bilaterian cell-cell signaling pathways (Wnt, TGFbeta, FGF, and Hh) that appear to act in concert to pattern tissues along the oral-aboral axis of the polyp. Cnidarians represent a diverse group of animals with a predominantly epithelial body plan, and perhaps selective pressures to pattern epithelia resulted in the ontogeny of the hedgehog pathway in the common ancestor of the Cnidaria and Bilateria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2288667 | PMC |
http://dx.doi.org/10.1016/j.ydbio.2007.09.032 | DOI Listing |
Microorganisms
October 2022
Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA.
Inteins (intervening proteins) are polypeptides that interrupt the sequence of other proteins and remove themselves through protein splicing. In this intein-catalyzed reaction, the two peptide bonds surrounding the intein are rearranged to release the intein from the flanking protein sequences, termed N- and C-exteins, which are concurrently joined by a peptide bond. Because of this unique functionality, inteins have proven exceptionally useful in protein engineering.
View Article and Find Full Text PDFJ Mol Biol
April 2022
Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA; Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06511, USA. Electronic address:
The presence of selenocysteine in a protein confers many unique properties that make the production of recombinant selenoproteins desirable. Targeted incorporation of Sec into a protein of choice is possible by exploiting elongation factor Tu-dependent reassignment of UAG codons, a strategy that has been continuously improved by a variety of means. Improving selenoprotein yield by directed evolution requires selection and screening markers that are titratable, have a high dynamic range, enable high-throughput screening, and can discriminate against nonspecific UAG decoding.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2021
Wadsworth Center, New York State Department of Health, Albany, NY 12208;
Self-splicing proteins, called inteins, are present in many human pathogens, including the emerging fungal threats () and (), the causative agents of cryptococcosis. Inhibition of protein splicing in sp. interferes with activity of the only intein-containing protein, Prp8, an essential intron splicing factor.
View Article and Find Full Text PDFPLoS Biol
October 2019
Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York, United States of America.
The spliceosome is a large ribonucleoprotein complex that removes introns from pre-mRNAs. At its functional core lies the essential pre-mRNA processing factor 8 (Prp8) protein. Across diverse eukaryotes, this protein cofactor of RNA catalysis harbors a self-splicing element called an intein.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2019
Center for Ecology and Evolution in Microbial Model Systems, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
While filamentous cyanobacteria play a crucial role in food web dynamics and biogeochemical cycling of many aquatic ecosystems around the globe, the knowledge regarding the phages infecting them is limited. Here, we describe the complete genome of the virulent cyanophage vB_AphaS-CL131 (here, CL 131), a phage that infects the filamentous diazotrophic bloom-forming cyanobacterium in the brackish Baltic Sea. CL 131 features a 112,793-bp double-stranded DNA (dsDNA) genome encompassing 149 putative open reading frames (ORFs), of which the majority (86%) lack sequence homology to genes with known functions in other bacteriophages or bacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!