Girolline interferes with cell-cycle progression, but not with translation.

C R Biol

Unité de biochimie cellulaire, université Pierre-et-Marie-Curie, UMR 7098 CNRS, 9, quai Saint-Bernard, 75005 Paris, France.

Published: December 2007

Girolline is a 2-aminoimidazole derivative with cytotoxic activity. It affects the survival of exponentially growing leukaemic cultured cells and has a significant antitumour activity on grafted murine tumours in vivo. In vitro studies showed that girolline affected protein synthesis by interfering with the translation termination process. Here, we investigate the effect of girolline on translation termination in human cultured cells. We show that girolline neither induces an increase in translational readthrough of stop codons nor affects the polysome profile in treated cells. This suggests that girolline does not act on translation in vivo. Then, we examine the effect of girolline on cell-cycle progression and we show that girolline induces an arrest of the cell cycle at the G2 stage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.crvi.2007.08.011DOI Listing

Publication Analysis

Top Keywords

girolline
8
cell-cycle progression
8
cultured cells
8
translation termination
8
girolline translation
8
girolline induces
8
girolline interferes
4
interferes cell-cycle
4
translation
4
progression translation
4

Similar Publications

Natural products have a long history of providing probes into protein biosynthesis, with many of these compounds serving as therapeutics. The marine natural product girolline has been described as an inhibitor of protein synthesis. Its precise mechanism of action, however, has remained unknown.

View Article and Find Full Text PDF

Toll-like receptors (TLRs) play a critical role in innate immunity, but activation of TLR signaling pathways is also associated with many harmful inflammatory diseases. Identification of novel anti-inflammatory molecules targeting TLR signaling pathways is central to the development of new treatment approaches for acute and chronic inflammation. We performed high-throughput screening from crude marine sponge extracts on TLR5 signaling and identified girolline.

View Article and Find Full Text PDF

[Study on natural products for drug development].

Yakugaku Zasshi

October 2010

Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi, Kumamoto, Japan.

The ubiquitin-proteasome system (UPS) plays a major role in selective protein degradation and regulates various cellular events. Approval of bortezomib for the treatment of multiple myeloma validated the proteasome as an anticancer target. In order to find drug candidates targeting the ubiquitin-dependent protein degradation, we paid an attention to inhibitors against three enzymes, ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin-protein ligase (E3), which are required for polyubiquitination of proteins and prerequisite to proteasome-mediated protein degradation.

View Article and Find Full Text PDF

Antimalarial natural products of marine and freshwater origin.

Chem Rec

September 2009

Chemical Synthesis Laboratory (SB-ISIC-LSYNC), Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland. karl.gademann@epfl .ch

This review highlights recently discovered antimalarial natural products from marine and freshwater sources described in the literature from 2006 to 2008. The structures as well as bioactivities of compounds against the malaria parasites such as Plasmodium falciparum are discussed, including, for example, agelasine, xestoquinone, alisiaquinone, crambescidin, venturamide, dragomabin, gragonamide, viridamide, salinosporamide, chaetoxanthone, nodulisporacid, tumonoic acid, girolline, oroidin, nostocarboline, aerucyclamide, and microcylamide 7806 and its revised structure. Synthetic derivatives of natural products are presented including plakortin, isoaaptamine, curcuphenol, pseudopyronine, manzamine, and nostocarboline.

View Article and Find Full Text PDF

Clinical status of anti-cancer agents derived from marine sources.

Anticancer Agents Med Chem

August 2008

Department of Chemistry, University of Delhi, Delhi-110007, India.

The chemical, biological and ecological diversity of the marine ecosystem has contributed immensely in the discovery of extremely potent compounds that have shown potent activities in antitumor, analgesia, antiinflammatory, immunomodulation, allergy, anti-viral etc. The compounds of marine origin are diverse in structural class from simple linear peptides to complex macrocyclic polyethers. The recent advances in the sophisticated instruments for the isolation and characterization of marine natural products and development of high-throughput screening, have substantially increased the rate of discovery of various compounds of biomedical application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!