We designed the present experiments to investigate the involvement of endogenous nitric oxide synthase (NOS) inhibitors, dimethylarginine dimethylaminohydrolase (DDAH) as a hydrolyzing enzyme of the NOS inhibitors, NOS, arginase which shares l-arginine as a common substrate with NOS, and endothelin-1 (ET-1) in the pulmonary dysfunction after induction of experimental subarachnoid hemorrhage (SAH) in the rabbit. SAH was induced by injecting autologous blood into the cisterna magna, and controls were injected with saline. On day 2, pulmonary arteries were isolated for determinations. A significant impairment of the endothelium-dependent relaxation (EDR) caused by acetylcholine was found in 20 cases (43.5%) out of 46 SAH animals, and the same animals exhibited accompanying the significantly impaired cyclic GMP production, accumulated endogenous NOS inhibitors, attenuated DDAH activity, enhanced arginase activity and accumulated ET-1 within the vessel wall. Meanwhile, there were no differences in endothelial NOS activity per se and sodium nitroprusside-induced relaxation between the animals with an impaired EDR and those without such a change. ET-1 content within aortic wall was increased with concomitant decrease in cyclic GMP production after the intraperitoneal application of authentic monomethylarginine as a NOS inhibitor in the rat. The current results suggest that accumulated endogenous NOS inhibitors and enhanced arginase activity possibly bring about the impaired NO production, thereby attenuating the EDR and contributing to the accumulation of ET-1 within the vessel wall. The accumulated endogenous NOS inhibitors at least partly result from the decreased DDAH activity. These alterations may be relevant to the pulmonary dysfunction after induction of SAH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vph.2007.11.002 | DOI Listing |
Adv Sci (Weinh)
December 2024
Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
Mild hyperthermia therapy has garnered interest as an adjunctive treatment for bone repair. However, its optimal timing, duration, and underlying mechanisms remain unclear. In this study, how mild hyperthermia supports bone repair during the early stages is assesed.
View Article and Find Full Text PDFPlant Physiol
December 2024
State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
Arbuscular mycorrhizal fungi (AMF) can transfer inorganic nitrogen (N) from the soil to host plants to cope with drought stress, with arginine synthesis and NH4+ transport being pivotal processes. However, the regulatory mechanism underlying these processes remains unclear. Here, we found that drought stress upregulated expression of genes involved in the N transfer pathway and putrescine and glutathione synthesis in the mycorrhizal structures of Rhizophagus irregularis within alfalfa (Medicago sativa) roots, i.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland.
ACS Synth Biol
December 2024
Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands.
Lacticin 481, a ribosomally synthesized and post-translationally modified peptide (RiPP), exhibits antimicrobial activity, for which its characteristic lanthionine and methyllanthionine ring structures are essential. The post-translational introduction of (methyl)lanthionines in lacticin 481 is catalyzed by the enzyme LctM. In addition to macrocycle formation, various other post-translational modifications can enhance and modulate the chemical and functional diversity of antimicrobial peptides.
View Article and Find Full Text PDFFASEB J
December 2024
Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
Malaria remains a significant global public health problem. T follicular helper (Tfh) cells, a subset of CD4 T cells, have the capacity to regulate B cells, plasma cells, and antibody production, among other functions. Myeloid-derived suppressor cells (MDSCs) possess strong immunosuppressive abilities and can negatively regulate various immune responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!