FOG-2 is a transcriptional co-regulator that is required for cardiac morphogenesis as mice deficient in this factor die during mid-gestation of cardiac malformations. FOG-2 interacts with GATA4 to attenuate GATA4-dependent gene expression. The first 12 amino acids of FOG-2 (the FOG Repression Motif) are necessary to mediate this repression. To determine the mechanism by which the FOG Repression Motif functions, we identified 7 polypeptides from rat cardiac nuclear extracts that co-purified with a GST-FOG-2 fusion protein. All proteins identified are members of the NuRD nucleosome remodeling complex. Using in vitro binding and co-immunoprecipitation assays, we demonstrate that Metastasis-Associated proteins (MTA)-1, 2 and 3 and Retinoblastoma binding proteins RbAp46 and RbAp48 interact with FOG-2, but not with a mutant form of FOG-2 that is unable to repress transcription. Furthermore, we define a novel domain located in the C-terminal portion of MTA-1 that mediates the FOG-2/MTA-1 interaction. We also demonstrate that knockdown of MTA protein expression dramatically impairs the ability of FOG-2 to repress GATA4 activity. Finally, we show that the zinc finger domain of MTA-1 is required for FOG-2-mediated transcriptional repression and that this domain interacts with RbAp46 and RbAp48 subunits of the NuRD complex. Together, these results demonstrate the importance of FOG-2/MTA/RbAp interactions for FOG-2-mediated transcriptional repression and further define the molecular interactions between the FOG Repression Motif and the NuRD complex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2277079PMC
http://dx.doi.org/10.1016/j.yjmcc.2007.10.023DOI Listing

Publication Analysis

Top Keywords

fog-2-mediated transcriptional
12
transcriptional repression
12
nurd complex
12
fog repression
12
repression motif
12
zinc finger
8
required fog-2-mediated
8
rbap46 rbap48
8
repression
7
fog-2
6

Similar Publications

FOG-2 mediated recruitment of the NuRD complex regulates cardiomyocyte proliferation during heart development.

Dev Biol

November 2014

Department of Medicine, The University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA. Electronic address:

FOG-2 is a multi-zinc finger protein that binds the transcriptional activator GATA4 and modulates GATA4-mediated regulation of target genes during heart development. Our previous work has demonstrated that the Nucleosome Remodeling and Deacetylase (NuRD) complex physically interacts with FOG-2 and is necessary for FOG-2 mediated repression of GATA4 activity in vitro. However, the relevance of this interaction for FOG-2 function in vivo has remained unclear.

View Article and Find Full Text PDF

FOG-2 is a transcriptional co-regulator that is required for cardiac morphogenesis as mice deficient in this factor die during mid-gestation of cardiac malformations. FOG-2 interacts with GATA4 to attenuate GATA4-dependent gene expression. The first 12 amino acids of FOG-2 (the FOG Repression Motif) are necessary to mediate this repression.

View Article and Find Full Text PDF

Members of the Friend of GATA (FOG) family of transcriptional co-factors are required for the development of both the cardiovascular and hematopoietic systems. FOG proteins physically interact with members of the GATA family of transcriptional activators and modulate their activity. We have previously shown that FOG-2 can bind to the N-terminal zinc finger of GATA4 and, via this interaction, repress GATA4-mediated transcriptional activation of various cardiac promoters.

View Article and Find Full Text PDF

GATA4 is a transcriptional activator of cardiac-restricted promoters and is required for normal cardiac morphogenesis. Friend of GATA-2 (FOG-2) is a multizinc finger protein that associates with GATA4 and represses GATA4-dependent transcription. To better understand the transcriptional repressor activity of FOG-2 we performed a functional analysis of the FOG-2 protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!