FOG-2 is a transcriptional co-regulator that is required for cardiac morphogenesis as mice deficient in this factor die during mid-gestation of cardiac malformations. FOG-2 interacts with GATA4 to attenuate GATA4-dependent gene expression. The first 12 amino acids of FOG-2 (the FOG Repression Motif) are necessary to mediate this repression. To determine the mechanism by which the FOG Repression Motif functions, we identified 7 polypeptides from rat cardiac nuclear extracts that co-purified with a GST-FOG-2 fusion protein. All proteins identified are members of the NuRD nucleosome remodeling complex. Using in vitro binding and co-immunoprecipitation assays, we demonstrate that Metastasis-Associated proteins (MTA)-1, 2 and 3 and Retinoblastoma binding proteins RbAp46 and RbAp48 interact with FOG-2, but not with a mutant form of FOG-2 that is unable to repress transcription. Furthermore, we define a novel domain located in the C-terminal portion of MTA-1 that mediates the FOG-2/MTA-1 interaction. We also demonstrate that knockdown of MTA protein expression dramatically impairs the ability of FOG-2 to repress GATA4 activity. Finally, we show that the zinc finger domain of MTA-1 is required for FOG-2-mediated transcriptional repression and that this domain interacts with RbAp46 and RbAp48 subunits of the NuRD complex. Together, these results demonstrate the importance of FOG-2/MTA/RbAp interactions for FOG-2-mediated transcriptional repression and further define the molecular interactions between the FOG Repression Motif and the NuRD complex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2277079 | PMC |
http://dx.doi.org/10.1016/j.yjmcc.2007.10.023 | DOI Listing |
Dev Biol
November 2014
Department of Medicine, The University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA. Electronic address:
FOG-2 is a multi-zinc finger protein that binds the transcriptional activator GATA4 and modulates GATA4-mediated regulation of target genes during heart development. Our previous work has demonstrated that the Nucleosome Remodeling and Deacetylase (NuRD) complex physically interacts with FOG-2 and is necessary for FOG-2 mediated repression of GATA4 activity in vitro. However, the relevance of this interaction for FOG-2 function in vivo has remained unclear.
View Article and Find Full Text PDFJ Mol Cell Cardiol
February 2008
The Committee on Developmental Biology, University of Chicago, Chicago, IL 60637, USA.
FOG-2 is a transcriptional co-regulator that is required for cardiac morphogenesis as mice deficient in this factor die during mid-gestation of cardiac malformations. FOG-2 interacts with GATA4 to attenuate GATA4-dependent gene expression. The first 12 amino acids of FOG-2 (the FOG Repression Motif) are necessary to mediate this repression.
View Article and Find Full Text PDFJ Biol Chem
December 2004
Department of Medicine, Stanford University, Stanford, CA 94305, USA.
Members of the Friend of GATA (FOG) family of transcriptional co-factors are required for the development of both the cardiovascular and hematopoietic systems. FOG proteins physically interact with members of the GATA family of transcriptional activators and modulate their activity. We have previously shown that FOG-2 can bind to the N-terminal zinc finger of GATA4 and, via this interaction, repress GATA4-mediated transcriptional activation of various cardiac promoters.
View Article and Find Full Text PDFJ Biol Chem
July 2000
Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.
GATA4 is a transcriptional activator of cardiac-restricted promoters and is required for normal cardiac morphogenesis. Friend of GATA-2 (FOG-2) is a multizinc finger protein that associates with GATA4 and represses GATA4-dependent transcription. To better understand the transcriptional repressor activity of FOG-2 we performed a functional analysis of the FOG-2 protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!