Objective: To evaluate the effect of treatment of type 1 diabetes by transplantation of bone-derived stem cells expressing human insulin gene.

Methods: Murine bone marrow-derived stem cells expressing green fluorescent protein (GFP-mMSCs) were isolated from 4/6-week-old GFP mice and transfected with a recombinant retrovirus-murine stem cell virus (MSCV) encoding human insulin gene, thus constructing the GFP-mMSCs-MCV-insulin. 16 C57BL/6J mice were injected with streptozotocin so as to establish models of type 1 diabetes and then randomly divided into 4 equal groups: Group A, undergoing injection into the liver with GFP-mMSC-MCV-insulin 1 week after the establishment of the model, Group B, undergoing intrahepatic transplantation of the GFP-mMSCs transfected with blank vector, Group C, undergoing intrahepatic transplantation of untransfected GFP-mMSCs, and Group D, undergoing intrahepatic transplantation of phosphate-buffered saline (PBS). Another 4 normal mice were used as controls and underwent intrahepatic transplantation of PBS too. After the transplantation the blood glucose, serum insulin, and body weight were detected everyday. 6 weeks later immunohistochemistry was used to detect the expression of human insulin in the mice liver tissues.

Results: The body weight of Group A increased by 6% within 6 weeks after treatment, and the average blood glucose level 7 d and 42 d after transplantation were (10.4 +/- 2.8) mmol/L and (6.5 +/- 0.9) mmol/L respectively, both significantly lower than those of Group D [(26.8 +/- 2.5) mmol/L and (25.4 +/- 4.1) mmol/L respectively, both P < 0.05]. Immunohistochemistry showed secretion of human insulin in serum and liver.

Conclusion: The clinical manifestations of diabetes can be relieved effectively by intrahepatic transplantation of mMSCs expressing human insulin gene. This study implies a novel approach of gene therapy for type 1 diabetes.

Download full-text PDF

Source

Publication Analysis

Top Keywords

human insulin
24
intrahepatic transplantation
20
type diabetes
16
group undergoing
16
+/- mmol/l
16
stem cells
12
cells expressing
12
expressing human
12
insulin gene
12
undergoing intrahepatic
12

Similar Publications

Is isocaloric intermittent fasting superior to calorie restriction? A systematic review and meta-analysis of RCTs.

Nutr Metab Cardiovasc Dis

November 2024

Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 1555, Al Ain, United Arab Emirates. Electronic address:

Background And Aim: Intermittent fasting (IF) has been demonstrated to enhance human health through several mechanisms. However, it is still unclear whether those health benefits are independent of caloric restriction (CR)-induced weight loss. This systematic review and meta-analysis aimed to compare isocaloric IF and CR regarding anthropometric measurements, adherence, metabolic profile, inflammatory biomarkers, and adipokines in adults and elderlies.

View Article and Find Full Text PDF

Introduction: Type 2 diabetes increases the risk of Alzheimer's disease (AD) dementia. Insulin signaling dysfunction exacerbates tau protein phosphorylation, a hallmark of AD pathology. However, the comprehensive impact of diabetes on patterns of AD-related phosphoprotein in the human brain remains underexplored.

View Article and Find Full Text PDF

Background: Plant-based foods have reduced protein digestibility and frequently display unbalanced amino acid profiles. Plant-based foods are therefore considered inferior to animal-based foods in their anabolic potential. No study has assessed the anabolic potential of a vegan diet that provides a large variety of plant-based protein sources in older adults.

View Article and Find Full Text PDF

Background: Cisplatin (DDP) resistance has long posed a challenge in the clinical treatment of lung cancer (LC). Insulin-like growth factor 2 binding protein 2 (IGF2BP2) has been identified as an oncogenic factor in LC, whereas its specific role in DDP resistance in LC remains unclear.

Results: In this study, we investigated the role of IGF2BP2 on DDP resistance in DDP-resistant A549 cells (A549/DDP) in vitro and in a DDP-resistant lung tumor-bearing mouse model in vivo.

View Article and Find Full Text PDF

Diabetes mellitus is a chronic disease characterized by metabolic defects, including insulin deficiency and resistance. Individuals with diabetes are at increased risk of developing cardiovascular complications, such as atherosclerosis, coronary artery disease, and hypertension. Conventional treatment methods, though effective, are often challenging, costly, and may lead to systemic side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!