Flavonoid quercetin and its derivative, methylquercetin, inhibit the replication of poliovirus in several cell lines. Here, we show that replication of poliovirus is inhibited by quercetin and that the extent of this inhibition depends on the intracellular content of pirin, a quercetinase. HeLa cells contain higher content of pirin protein than normal kidney human epithelial (NKE) or 293 cells do. Poliovirus replication in HeLa cells is significantly more resistant to quercetin than its replication in NKE and 293 cells. Overexpression of pirin reduced antiviral inhibitory effect of quercetin, while siRNA-induced suppression of pirin level made poliovirus replication more sensitive to the flavonoid. The results suggest that quercetinase activity of pirin determines the resistance of poliovirus infection to quercetin.

Download full-text PDF

Source
http://dx.doi.org/10.1089/dna.2007.0682DOI Listing

Publication Analysis

Top Keywords

poliovirus replication
12
flavonoid quercetin
8
replication poliovirus
8
content pirin
8
hela cells
8
nke 293
8
293 cells
8
poliovirus
6
replication
6
quercetin
6

Similar Publications

Enterovirus and Parechovirus Neurologic Infections in Children: Clinical Presentations and Neuropathogenesis.

J Pediatric Infect Dis Soc

January 2025

Sections of Hospital Medicine and Pediatric Infectious Diseases, University of Colorado, Aurora, CO, USA.

Enteroviruses (EVs) and parechoviruses (PeVs) are common pathogens of childhood. Enteroviral infections cause a range of clinical syndromes from mild illness to neurologic manifestations of meningitis, encephalitis, and acute flaccid myelitis. Disease manifestations are driven by a combination of viral replication and host immune response.

View Article and Find Full Text PDF

Unlabelled: Non-enveloped viruses like poliovirus (PV) have evolved the capacity to spread by non-lytic mechanisms. For PV, this mechanism exploits the host secretory autophagy pathway. Virions are selectively incorporated into autophagosomes, double-membrane vesicles that travel to the plasma membrane, fuse, and release single-membrane vesicles containing virions.

View Article and Find Full Text PDF

Virus spread at the single-cell level is largely uncharacterized. We have designed and constructed a microfluidic device in which each nanowell contains a single, infected cell (donor) and a single, uninfected cell (recipient). Using a GFP-expressing poliovirus as our model, we observed both lytic and non-lytic spread.

View Article and Find Full Text PDF

Enteroviruses (EV) initiate replication by binding to their cellular receptors, leading to the uncoating and release of the viral genome into the cytosol of the host cell. Neutralising antibodies (NAbs) binding to epitopes on enteroviral capsid proteins can inhibit this infectious process through several mechanisms of neutralisation in vitro. Fc-mediated antibody effector functions such as antibody-dependent cell-mediated cytotoxicity and antibody-dependent cellular phagocytosis have also been described for some EV.

View Article and Find Full Text PDF

A Novel Peptide from VP1 of EV-D68 Exhibits Broad-Spectrum Antiviral Activity Against Human Enteroviruses.

Biomolecules

October 2024

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.

Article Synopsis
  • Enteroviruses, including polioviruses and non-polio variants, are a significant health concern, with over 116 types affecting humans annually.
  • A novel peptide called P25 from EV-D68 shows broad antiviral activity against multiple enterovirus species by targeting key viral structures and functions.
  • P25 has the potential to serve as a universal anti-enterovirus drug candidate due to its ability to block viral receptor binding, inhibit viral genome release, and reduce the production of infectious viral particles.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!