Magnetic resonance imaging offers unique insights into three-dimensional foot bone motion. Thereby, adequate devices enabling defined loading and positioning of the foot are needed to profit from this noninvasive procedure. Tarsal bone positions of three healthy subjects were repeatedly measured in a pronated and a supinated foot excursion under bodyweight with a newly developed MR imaging procedure. The quantification of the transferred motion from the loading and positioning device to the calcaneus and an estimation of the required degrees to distinguish between tarsal joint rotations were used to evaluate the applicability of the procedure to investigate tarsal joint motion. It was found that 45-70% (75-95%) of the externally applied 15 deg foot pronation (supination) were transferred to the calcaneus. Furthermore, the talonavicular joint showed the largest amount of rotation up to 20 deg eversion-inversion and abadduction, followed by the subtalar joint showing nearly half of that motion. Considerably less motion was found between the cuboid and calcaneus (about 2-6 deg) and the cuboid nearly did not rotate relative to the navicular (on average 1 deg). The estimated necessary differences between tarsal joint movements to identify individual kinematic behavior were in the order of 2 deg (4 deg related to the talonavicular joint). Since the results were in agreement with the literature, it is concluded that the applicability of the presented procedure to investigate tarsal bone mechanics is warranted. The possibility to evaluate 3D tarsal joint motion in combination with bone morphology (e.g., joint curvature) may provide new insights in the still uncertain relationship between foot function and foot morphology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1115/1.2805400 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!