A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Vibrio harveyi flavin reductase--luciferase fusion protein mimics a single-component bifunctional monooxygenase. | LitMetric

Vibrio harveyi flavin reductase--luciferase fusion protein mimics a single-component bifunctional monooxygenase.

Biochemistry

Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001, USA.

Published: January 2008

Vibrio harveyi luciferase and flavin reductase FRP are, together, a two-component monooxygenase couple. The reduced flavin mononucleotide (FMNH2) generated by FRP must be supplied, through either free diffusion or direct transfer, to luciferase as a substrate. In contrast, single-component bifunctional monooxygenases each contains a bound flavin cofactor and does not require any flavin addition to facilitate catalysis. In this study, we generated and characterized a novel fusion enzyme, FRP-alphabeta, in which FRP was fused to the luciferase alpha subunit. Both FRP and luciferase within FRP-alphabeta were catalytically active. Kinetic properties characteristic of a direct transfer of FMNH2 cofactor from FRP to luciferase in a FRP:luciferase noncovalent complex were retained by FRP-alphabeta. At submicromolar levels, FRP-alphabeta was significantly more active than an equal molar mixture of FRP and luciferase in coupled bioluminescence without FMN addition. Importantly, FRP-alphabeta gave a higher total quantum output without than with exogenously added FMN. Moreover, effects of increasing concentrations of oxygen on light intensity were investigated using sub-micromolar enzymes, and results indicated that the bioluminescence produced by FRP-alphabeta without added flavin was derived from direct transfer of reduced flavin whereas bioluminescence from a mixture of FRP and luciferase with or without exogenously added flavin relied on free-diffusing reduced flavin. Therefore, the overall catalytic reaction of FRP-alphabeta without any FMN addition closely mimics that of a single-component bifunctional monooxygenase. This fusion enzyme approach could be useful to other two-component monooxygenases in enhancing the enzyme efficiencies under conditions hindering reduced flavin delivery. Other potential utilities of this approach are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi701392bDOI Listing

Publication Analysis

Top Keywords

reduced flavin
16
frp luciferase
16
single-component bifunctional
12
direct transfer
12
flavin
10
vibrio harveyi
8
mimics single-component
8
bifunctional monooxygenase
8
fusion enzyme
8
mixture frp
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!