The NagZ class of retaining exo-glucosaminidases play a critical role in peptidoglycan recycling in Gram-negative bacteria and the induction of resistance to beta-lactams. Here we describe the concise synthesis of 2-azidoacetyl-2-deoxy-5-fluoro-beta-d-glucopyranosyl fluoride as an activity-based proteomics probe for profiling these exo-glycosidases. This active-site directed reagent covalently inactivates this class of retaining N-acetylglucosaminidases with exquisite selectivity by stabilizing the glycosyl-enzyme intermediate. Inactivated Vibrio cholerae NagZ can be elaborated with biotin or a FLAG-peptide epitope using the Staudinger ligation or the Sharpless-Meldal click reaction and detected at nanogram levels. This ABPP enabled the profiling of the Pseudomonas aeruginosa proteome and identification at endogenous levels of a tagged protein with properties consistent with those of PA3005. Cloning of the gene encoding this hypothetical protein and biochemical characterization enabled unambiguous assignment of this hypothetical protein as a NagZ. The identification and cloning of this NagZ may facilitate the development of strategies to circumvent resistance to beta-lactams in this human pathogen. As well, this general strategy, involving such 5-fluoro inactivators, may prove to be of general use for profiling proteomes and identifying glycoside hydrolases of medical importance or having desirable properties for biotechnology.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0763605DOI Listing

Publication Analysis

Top Keywords

pseudomonas aeruginosa
8
class retaining
8
resistance beta-lactams
8
hypothetical protein
8
nagz
5
synthesis mechanism-based
4
mechanism-based protein-profiling
4
protein-profiling probes
4
probes retaining
4
retaining beta-d-glucosaminidases
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!