Objective: To assemble the full-length of human resistin gene in vitro by using oligonucleotides and to construct its eukaryotic expression vector.
Methods: According to the gene sequence of resistin (GenBank: AF323081), 10 oligonucleotides were designed and synthesized, followed by a touch down PCR to assemble the full-length gene. The PCR products were cloned into pSecTag2B vector and confirmed by sequencing.
Results: The band of PCR products and gene sequencing showed the insert fragment in pSecTag2B vector was identical to that as designed.
Conclusion: The full-length of human resistin coding sequence was successfully assembled and amplified by touch down PCR, and a resistin-expressing eukaryotic vector was constructed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3785/j.issn.1008-9292.2007.06.012 | DOI Listing |
Food Environ Virol
January 2025
Laboratorio de Ecología Viral y Virus Zoonóticos, Unidad Académica de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, 11600, Montevideo, Uruguay.
Human respiratory and enteric viruses are responsible for substantial morbidity and mortality worldwide. Wastewater-based epidemiology utilizing next-generation sequencing serves as an effective tool for monitoring viral circulation dynamics at the community level. However, these complex environmental samples are often laden with other microorganisms and host genomic material, which can hinder the sensitivity of viral detection.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Alzheimer's Disease Neuroimaging Initiative, http://adni.loni.usc.edu/, CA, USA.
Background: The emergence of blood-based biomarkers offers a cost-effective and less invasive alternative to established neuroimaging and cerebrospinal fluid biomarkers. Newly developed fluid biomarkers, including N-terminal tau fragment (NT1), have shown promise for identifying individuals at risk for Alzheimer's disease (AD). Evidence has shown NT1 may be more abundant than full-length tau across the AD continuum and has high sensitivity and specificity to separate cognitively normal (CN) individuals from those with mild cognitive impaired (MCI) and AD in discovery and replication cohorts.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide and the leading cause of dementia in the elderly. New approaches to study AD are still needed to identify and validate blood-based diagnostic biomarkers that could be useful for its early diagnosis. Circulating autoantibodies (AAbs) and their target proteins (autoantigens) are promising candidate biomarkers to aid in AD early diagnosis.
View Article and Find Full Text PDFBackground: The accumulation of hyperphosphorylated, aggregated tau in neurons is one of the hallmarks of Alzheimer's disease (AD). Recent work in structural biology has solved the structure of tau fibrils in several tauopathies and found that the structure of the tau fibrils varies between diseases, but fibril structure is conserved among patients within the same disease, suggesting fibril structure relates to its pathogenicity. Tau fibrils derived from AD brain (AD PHFs) seed AD-like pathology in wild-type mice, yet efforts to recapitulate this seeding with recombinant fibrils have failed.
View Article and Find Full Text PDFBackground: G protein-coupled receptors (GPCRs) are associated with multiple stages of the pathophysiology of Alzheimer's disease (AD). Biased GPCR signaling preferentially activates G protein- or β-arrestin-mediated signaling pathways and presents opportunities to develop more selective and safer therapeutics but remains largely unexplored in AD. Recently, we developed a G protein-biased GPR3 AD mouse model, which does not recruit β-arrestin 2, that displays reduced amyloid-β (Aβ) pathology without adverse cognitive effects associated with elimination of both G protein and β-arrestin signaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!