Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mercury has been identified as a risk factor for cardiovascular disease among humans. Through diet, mainly fish consumption, humans are exposed to methylmercury, the biomethylated organic form of environmental mercury. As the endothelium is an important player in homeostasis of the cardiovascular system, here, the authors tested their hypothesis that methylmercury activates the lipid signaling enzyme phospholipase A(2) (PLA(2)) in vascular endothelial cells (ECs), causing upstream regulation of cytotoxicity. To test this hypothesis, the authors used bovine pulmonary artery ECs (BPAECs) cultured in monolayers, following labeling of their membrane phospholipids with [(3)H]arachidonic acid (AA). The cells were exposed to methylmercury chloride (MMC) and then the release of free AA (index of PLA(2) activity) and lactate dehydrogenase (LDH; index of cytotoxicity) were determined by liquid scintillation counting and spectrophotometry, respectively. MMC significantly activated PLA(2) in a dose-dependent (5 to 15 microM) and time-dependent (0 to 60 min) fashion. Sulfhydryl (thiol-protective) agents, calcium chelators, antioxidants, and PLA(2)-specific inhibitors attenuated the MMC-induced PLA(2) activation, suggesting the role of thiols, reactive oxygen species (ROS), and calcium in the activation of PLA(2) in BPAECs. MMC also induced the loss of thiols and increase of lipid peroxidation in BPAECs. MMC induced cytotoxicity in BPAECs as observed by the altered cell morphology and LDH leak, which was significantly attenuated by PLA(2) inhibitors. This study established that PLA(2) activation through thiols, calcium, and oxidative stress was associated with the cytotoxicity of MMC in BPAECs, drawing attention to the involvement of PLA(2) signaling in the methylmercury-induced vascular endothelial dysfunctions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10915810701707759 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!