Evaluation of the mutagenic and genotoxic potential of ubiquinol.

Int J Toxicol

Life Science Research Laboratories, Kaneka Corporation, Hyogo, Japan.

Published: March 2008

Ubiquinol (the reduced form of coenzyme Q(10)) is the two-electron reduction product of ubiquinone (the oxidized form of coenzyme Q(10)), and has been shown to be an integral part of living cells, where it functions as an antioxidant in both mitochondria and lipid membranes. To provide information to enable a Generally Regarded as Safe (GRAS) evaluation for the use of ubiquinol in selected foods, a series of Organisation of Economic Cooperation and Development (OECD) and good laboratory practice (GLP) toxicological studies was conducted to evaluate the mutagenic and genotoxic potential of Kaneka QH brand of ubiquinol. Ubiquinol did not induce reverse mutations in Salmonella typhimurium strains TA100, TA1535, TA98, and TA1537 and Escherichia coli WP2uvrA at concentrations up to 5000 mu g/plate, in either the absence and presence of exogenous metabolic activation by rat liver S9. Likewise, ubiquinol did not induce chromosome aberrations in Chinese hamster lung fibroblast (CHL/IU) cells in short-term (6-h) tests with or without rat liver S9 at concentrations up to 5000 mu g/ml or in a continuous (24-h) treatment test at concentrations up to 1201 mu g/ml. Finally, no mortalities, no abnormal clinical signs, and no significant increase in chromosome damage were observed in an in vivo micronucleus test when administered orally at doses up to 2000 mg/kg/day. Thus, ubiquinol was evaluated as negative in the bacterial reverse mutation, chromosomal aberration, and rat bone marrow micronucleus tests under the conditions of these assays.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10915810701707460DOI Listing

Publication Analysis

Top Keywords

mutagenic genotoxic
8
genotoxic potential
8
ubiquinol ubiquinol
8
form coenzyme
8
coenzyme q10
8
ubiquinol induce
8
concentrations 5000
8
rat liver
8
ubiquinol
7
evaluation mutagenic
4

Similar Publications

Safety and Antioxidant Assessments of BLR-E50, 50% Ethanolic Extract from Red Beans Co-fermented by Bacillus subtilis and Lactobacillus bulgaricus.

Food Chem Toxicol

January 2025

Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan; Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, 40201, Taiwan. Electronic address:

Since red beans have poor textural properties, fermentation is commonly used to help produce better pulse products. To obtain BLR-E50, red beans are fermented using a co-culture of Bacillus subtilis and Lactobacillus bulgaricus, followed by extraction with 50% ethanol. The present data demonstrate that BLR-E50 did not exhibit mutagenicity, genotoxicity, or subacute oral toxicity.

View Article and Find Full Text PDF

Cyto-Genotoxic Assessment of Sulfoxaflor in Allium cepa Root Cells and DNA Docking Studies.

Microsc Res Tech

January 2025

Molecular Biology and Genetics Department, Faculty of Engineering and Natural Sciences, Uşak University, Uşak, Turkey.

Sulfoxaflor (SFX) is an insecticide that is commonly used for the control of sap-feeding insects. Since SFX is extensively applied globally, it has been implicated in the substantial induction of environmental toxicity. Therefore, in this study, Allium cepa roots have been employed to elucidate the potential cytogenotoxic effects of SFX in non-target cells by examination of mitotic index (MI), chromosomal aberrations (CAs), and DNA damage.

View Article and Find Full Text PDF

Medicinal plants are products from natural sources that have found relevance in medicine for several decades. They are rich in bioactive compounds; thus, they are widely used to treat different ailments globally. Medicinal plants have provided hope for the health care industry as most are used to synthesize modern medicines currently used in the treatment of various diseases.

View Article and Find Full Text PDF

HemoHIM is a functional food ingredient comprising a triple herbal combination of extracts from Nakai, Makino, and Pallas. It was developed to aid the recovery of impaired immune function. Although it is widely used to treat various immune disorders in Korea, its potential toxicity has not been extensively investigated.

View Article and Find Full Text PDF

The kinetically-derived maximal dose (KMD) is defined as the maximum external dose at which kinetics are unchanged relative to lower doses, e.g., doses at which kinetic processes are not saturated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!