Triplex-mediated recognition of Py.Pu base pairs in DNA is a greater challenge than for Pu.Py base pairs as fewer hydrogen bonds are presented for binding in the major groove. Initial studies on m-aminophenyl-modified analogues of the bicyclic nucleoside N-methyl-3H-pyrrolo[2,3-d]pyrimidin-2(7 H)-one suggest that selective recognition of the CG base pair is possible.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15257770701533958DOI Listing

Publication Analysis

Top Keywords

base pair
8
base pairs
8
base
4
pair recognition
4
recognition dna
4
dna triple
4
triple helices
4
helices n-methyl-3h-pyrrolo[23-d]pyrimidin-27h-one
4
n-methyl-3h-pyrrolo[23-d]pyrimidin-27h-one nucleoside
4
nucleoside analogues
4

Similar Publications

Genetically Encoded Nucleic Acid Nanostructures for Biological Applications.

Chembiochem

January 2025

National Center for Nanoscience and Technology, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, No.11 BeiYiTiao, ZhongGuanCun, 100190, Beijing, CHINA.

Nucleic acid, as a carrier of genetic information, has been widely employed as a building block for the construction of versatile nanostructures with pre-designed sizes and shapes through complementary base pairing. With excellent programmability, addressability, and biocompatibility, nucleic acid nanostructures are extensively applied in biomedical researches, such as bio-imaging, bio-sensing, and drug delivery. Notably, the original gene-encoding capability of the nucleic acids themselves has been utilized in these structurally well-defined nanostructures.

View Article and Find Full Text PDF

The established consensus sequence for human 5' splice sites masks the presence of two major splice site classes defined by preferential base-pairing potentials with either U5 snRNA loop 1 or the U6 snRNA ACAGA box. The two 5' splice site classes are separable in genome sequences, sensitized by specific genotypes and associated with splicing complexity. The two classes reflect the commitment to 5' splice site usage occurring primarily during 5' splice site transfer to U6 snRNA.

View Article and Find Full Text PDF

Structural basis of 5' splice site recognition by the minor spliceosome.

Mol Cell

January 2025

European Molecular Biology Laboratory (EMBL), EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France. Electronic address:

The minor spliceosome catalyzes excision of U12-dependent introns from precursors of eukaryotic messenger RNAs (pre-mRNAs). This process is critical for many cellular functions, but the underlying molecular mechanisms remain elusive. Here, we report a cryoelectron microscopy (cryo-EM) reconstruction of the 13-subunit human U11 small nuclear ribonucleoprotein particle (snRNP) complex in apo and substrate-bound forms, revealing the architecture of the U11 small nuclear RNA (snRNA), five minor spliceosome-specific factors, and the mechanism of the U12-type 5' splice site (5'SS) recognition.

View Article and Find Full Text PDF

The Evolution of Nucleic Acid Nanotechnology: From DNA Assembly to DNA-Encoded Library.

Small Methods

January 2025

Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.

Deoxyribonucleic acid (DNA), a fundamental biomacromolecule in living organisms, serves as the carrier of genetic information. Beyond its role in encoding biological functions, DNA's inherent ability to hybridize through base pairing has opened new avenues for its application in biological sciences. This review introduces DNA nanotechnology and DNA-encoded library (DEL), and highlights their shared design principles related to DNA assembly.

View Article and Find Full Text PDF

Misfolding of the cellular PrP (PrP) protein causes prion disease, leading to neurodegenerative disorders in numerous mammalian species, including goats. A lack of PrP induces complete resistance to prion disease. The aim of this work was to engineer Alpine goats carrying knockout (KO) alleles of PRNP, the PrP-encoding gene, using CRISPR/Cas9-ribonucleoproteins and single-stranded donor oligonucleotides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!