A novel monolithic macroporous material was developed by cross-linking hen egg albumin (HEA) and chitosan with glutaraldehyde at subzero temperatures. A macroporous cryogel structure allowed efficient mass transport of solutes within the material. In one application, albumin was partially replaced with active enzymes (glucose oxidase and horseradish peroxidase) resulting in the production of macroporous biocatalyst preparations suitable for flow-injection analysis of glucose in the low millimolar range. In another application, the proteolytic enzymes savinase and esperase were coupled to the macroporous structure via free amino groups on the pore walls using glutaraldehyde as cross-linker/spacer agent. The low hydraulic resistance of the matrix allowed for the development of a generic, high-performance online protein digestion system utilizing the wall-bound proteases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-007-1745-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!