We aimed to detect truncated CCN3 protein variants in formalin-fixed paraffin-embedded samples of eight Wilms' tumors using anti-K19M and novel domain-specific antibodies, anti-NH2, anti-NH3, anti-NH4, and anti-NH5 raised against C-terminal (CT) domain and modules 1, 2, 3, and 4 of the CCN3 protein, respectively. In Wilms' tumors, all the domain antibodies except anti-NH4 exhibited both nuclear and cytoplasmic staining in blastema as well as primitive tubules. NH4 was detected only in the cytoplasm of tumor cells. Normal fetal kidneys revealed mainly cytoplasmic immunoreactivity for all antibodies in tubules and glomeruli, except for K19 and NH5, which showed some nuclear staining. Our data suggest expression of a truncated nuclear CCN3 variant lacking the thrombospondin type-1-like domain and cytoplasmic full-length CCN3 protein in Wilms' tumor cells. In addition, normal fetal kidneys express mainly full-length protein mostly localized to cytoplasm. Truncated CCN3 protein in Wilms' tumor cells may provide evidence for its tumorigenic role in these tumors. Uniform NH5 staining compared to variable expression of K19M indicates that using NH5 is a better approach for detecting the CT domain of CCN3 protein in archival specimens. Thus, the domain-specific antibodies represent valuable tools for detecting CCN3 protein variants in normal and neoplastic kidneys.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00428-007-0523-3DOI Listing

Publication Analysis

Top Keywords

ccn3 protein
28
wilms' tumors
12
domain-specific antibodies
12
protein wilms'
12
tumor cells
12
protein
8
ccn3
8
truncated ccn3
8
protein variants
8
normal fetal
8

Similar Publications

The rapid and efficient bone regeneration is still in unsatisfactory outcomes, demonstrating alternative strategy and molecular mechanism is necessary. Nanoscale biomaterials have shown some promising results in enhancing bone regeneration, however, the detailed interaction mechanism between nanomaterial and cells/tissue formation is not clear. Herein, a molecular-based inorganic-organic nanomaterial poly(citrate-siloxane) (PCS) is reported which can rapidly enhance osteogenic differentiation and bone formation through a special interaction with the cellular surface communication network factor 3 (CCN3), further activating the Wnt10b/β-catenin signaling pathway.

View Article and Find Full Text PDF

Plasma secretory proteins are associated with various diseases, including aortic dissection (AD). However, current research on the correlation between AD and plasma protein levels is scarce or lacks specificity. This study aimed to explore plasma secretory proteins as potential biomarkers for AD.

View Article and Find Full Text PDF

CCN3: lactational bone booster.

Cell Biosci

December 2024

USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, USA.

Mammalian reproduction requires that nursing mothers transfer large amounts of calcium to their offspring through milk. Meeting this demand requires the activation of a brain-breast-bone circuit during lactation that coordinates changes in systemic hormones, dietary calcium intake, skeletal turnover, and calcium transport into milk. Classically, increased bone resorption via increased parathyroid hormone-related protein and low estrogen levels is the main source of calcium for milk production during lactation.

View Article and Find Full Text PDF

Exploring the Role of Ccn3 in Type III Cell of Mice Taste Buds.

J Neurochem

January 2025

Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.

Different taste cells express unique cell-type markers, enabling researchers to distinguish them and study their functional differentiation. Using single-cell RNA-Seq of taste cells in mouse fungiform papillae, we found that Cellular Communication Network Factor 3 (Ccn3) was highly expressed in Type III taste cells but not in Type II taste cells. Ccn3 is a protein-coding gene involved in various biological processes, such as cell proliferation, angiogenesis, tumorigenesis, and wound healing.

View Article and Find Full Text PDF

Cellular communication network factor 3 contributes to the pathological process of rheumatoid arthritis through promoting cell senescence and osteoclastogenesis in the joint.

J Autoimmun

December 2024

Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan.

Rheumatoid arthritis (RA) is a chronic systemic and autoimmune disease that primarily affects joints and causes pain, stiffness and swelling. The affected joints exhibit severe inflammation in the synovium and bone erosion, leading to joint deformity. Aging is an important factor facilitating the development of RA, as it is associated with an increase in the number of senescent cells and the production of the autoantibodies and proinflammatory cytokines in tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!