A family of closed-form expressions for the scalar field of strongly focused Gaussian beams in oblate spheroidal coordinates is given. The solutions satisfy the wave equation and are free from singularities. The lowest-order solution in the far field closely matches the energy density produced by a sine-condition, high-aperture lens illuminated by a paraxial Gaussian beam. At the large waist limit the solution reduces to the paraxial Gaussian beam form. The solution is equivalent to the spherical wave of a combined complex point source and sink but has the advantage of being more directly interpretatable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.25.001792 | DOI Listing |
Due to their advantages of compact geometries and lightweight, diffractive optical elements (DOEs) are attractive in various applications such as sensing, imaging and holographic display. When designing DOEs based on algorithms, a diffraction model is required to trace the diffracted light propagation and to predict the performance. To have more precise diffraction field tracing and optical performance simulation, different diffraction models have been proposed and developed.
View Article and Find Full Text PDFIn the last few years, new ways of structuring light have emerged, with the potential to be used in a wide variety of applications, including materials processing, micro-particle manipulation and charged particle acceleration. One of these techniques is the structured laser beam (SLB). The important advantages of this beam are the simple generation principle using spherical aberration and the potentially infinite propagation range.
View Article and Find Full Text PDFSci Rep
January 2025
Departamento de Física Teórica, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
We use digital quantum computing to simulate the creation of particles in a dynamic spacetime. We consider a system consisting of a minimally coupled massive quantum scalar field in a spacetime undergoing homogeneous and isotropic expansion, transitioning from one stationary state to another through a brief inflationary period. We simulate two vibration modes, positive and negative for a given field momentum, by devising a quantum circuit that implements the time evolution.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
August 2024
A three-dimensional (3D) waveguide model is applied in extreme ultraviolet (EUV) lithography simulations. The 3D waveguide model is equivalent to rigorous coupled-wave analysis, but fewer field components are used to solve Maxwell's equations. The 3D waveguide model uses two components of vector potential, and , corresponding to the two polarizations.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, 70569, Germany.
In this study, we report a comprehensive calculation of the static dipole polarizabilities of group 12 elements using the finite-field approach combined with the relativistic coupled-cluster method, including single, double, and perturbative triple excitations. Relativistic effects are systematically investigated, including scalar-relativistic, spin-orbit coupling (SOC), and fully relativistic Dirac-Coulomb contributions. The final recommended polarizability values are 37.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!