Hydrogenases are enzymes involved in hydrogen metabolism, utilizing H2 as an electron source. [NiFe] hydrogenases are heterodimeric Fe-S proteins, with a large subunit containing the reaction center involving Fe and Ni metal ions and a small subunit containing one or more Fe-S clusters. Maturation of the [NiFe] hydrogenase involves assembly of nonproteinaceous ligands on the large subunit by accessory proteins encoded by the hyp operon. HypE is an essential accessory protein and participates in the synthesis of two cyano groups found in the large subunit. We report the crystal structure of Escherichia coli HypE at 2.0-A resolution. HypE exhibits a fold similar to that of PurM and ThiL and forms dimers. The C-terminal catalytically essential Cys336 is internalized at the dimer interface between the N- and C-terminal domains. A mechanism for dehydration of the thiocarbamate to the thiocyanate is proposed, involving Asp83 and Glu272. The interactions of HypE and HypF were characterized in detail by surface plasmon resonance and isothermal titration calorimetry, revealing a Kd (dissociation constant) of approximately 400 nM. The stoichiometry and molecular weights of the complex were verified by size exclusion chromatography and gel scanning densitometry. These experiments reveal that HypE and HypF associate to form a stoichiometric, hetero-oligomeric complex predominantly consisting of a [EF]2 heterotetramer which exists in a dynamic equilibrium with the EF heterodimer. The surface plasmon resonance results indicate that a conformational change occurs upon heterodimerization which facilitates formation of a productive complex as part of the carbamate transfer reaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2238214PMC
http://dx.doi.org/10.1128/JB.01610-07DOI Listing

Publication Analysis

Top Keywords

large subunit
12
[nife] hydrogenase
8
escherichia coli
8
hype hypf
8
surface plasmon
8
plasmon resonance
8
hype
6
structure [nife]
4
hydrogenase maturation
4
maturation protein
4

Similar Publications

Background: Cerebral microvascular dysfunction and nitro-oxidative stress are present in patients with Alzheimer's disease (AD) and may contribute to disease progression and severity. A pro-nitro-oxidative environment can lead to post-translational modifications of ion channels central to microvascular regulation in the brain, including the large conductance Ca-activated K channels (BK). Nitro-oxidative modulation of BK can resulting in decreased activity and vascular hyper-contractility, thus compromising neurovascular regulation.

View Article and Find Full Text PDF

SORL1 (SORLA, LR11) is a large (2214 residue), multi-domain type 1 integral membrane protein that is the product of the SORL1 gene. In neurons, where it is highly expressed, SORL1 functions as both a substrate of and a cargo receptor for the retromer multi protein complex that is a master regulator of protein trafficking out of the early endosome. The SORL1-Vps26b retromer, in particular, is dedicated to the recycling of cell surface proteins, including APP and AMPA receptor subunit GLUA1, back to the plasma membrane.

View Article and Find Full Text PDF

Six strains (DMKU-SG26, DMKU-SG42, DMKU-SYM22, DMKU-RG41, DMKU-RX317 and DMKU-RGM25) representing a novel basidiomycetous yeast species were isolated from leaf surfaces of mangrove plants collected in Thailand. Pairwise sequence analysis indicated that the six strains either had identical nucleotide substitution in the D1/D2 domains of the large subunit (LSU) rRNA gene sequences or differed by one to three nucleotide(s). They also had identical or differed by one to five nucleotide substitution(s) in the internal transcribed spacer (ITS) regions.

View Article and Find Full Text PDF

First Report of Causing Root Rot of Incense Cedar in Tennessee and the United States.

Plant Dis

January 2025

Tennessee State University, Otis Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, Tennessee, United States, 37110;

Incense cedar [ (Torr.) Florin] is a coniferous evergreen tree, indigenous to western North America, that is being evaluated in Tennessee for its adaptability to eastern U.S.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are associated with intercellular communications, immune responses, viral pathogenicity, cardiovascular diseases, neurological disorders, and cancer progression. EVs deliver proteins, metabolites, and nucleic acids into recipient cells to effectively alter their physiological and biological response. During their transportation from the donor to the recipient cell EVs face differential ionic concentrations, which can be detrimental to their integrity and impact their cargo content.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!