In recent years, restriction-less recombination cloning systems based on site-specific recombinase with high efficiency have been proven to be very successful. Thus, it is desirable to convert existing conventional vectors to recombination vectors. In this report, we describe the conversion of a set of widely used conventional vectors to Gateway recombination expression vectors. An attB cassette flanked by several restriction enzyme sites was inserted in a cloning vector, and then subcloned into existing vectors to be converted to construct intermediate vectors containing the attB cassette, which were then converted to recombination expression vectors by in vitro recombination. The intermediate vectors generated in this study can be used for releasing the attB cassette to convert other vectors using the same protocol described here. With the increasing number of recombination vectors constructed with this protocol, the likeliness of releasing the attB cassette from an existing vector, rather than synthesizing it with PCR, will increase. The final expression vectors can also be used for releasing the attR cassette for constructing new vectors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biot.200700170DOI Listing

Publication Analysis

Top Keywords

expression vectors
16
attb cassette
16
vectors
13
vitro recombination
8
conventional vectors
8
recombination vectors
8
recombination expression
8
vectors attb
8
intermediate vectors
8
releasing attb
8

Similar Publications

Transgene expression in stem cells is a powerful means of regulating cellular properties and differentiation into various cell types. However, existing vectors for transgene expression in stem cells suffer from limitations such as the need for genomic integration, the transient nature of gene expression, and the inability to temporally regulate transgene expression, which hinder biomedical and clinical applications. Here we report a new class of RNA virus-based vectors for scalable and integration-free transgene expression in mouse embryonic stem cells (mESCs).

View Article and Find Full Text PDF

Expanding the Potential of Circular RNA (CircRNA) Vaccines: A Promising Therapeutic Approach.

Int J Mol Sci

January 2025

State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China.

In recent years, circular RNAs (circRNAs) have garnered significant attention due to their unique structure and function, positioning them as promising candidates for next-generation vaccines. The circRNA vaccine, as an RNA vaccine, offers significant advantages in preventing infectious diseases by serving as a vector for protein expression through non-canonical translation. Notably, circRNA vaccines have demonstrated enduring antigenic expression and generate a larger percentage of neutralizing antibodies compared to mRNA vaccines administered at the same dosage.

View Article and Find Full Text PDF

Zika virus (ZIKV) is a medically important mosquito-borne orthoflavivirus, but no vaccines are currently available to prevent ZIKV-associated disease. In this study, we compared three recombinant chimeric viruses developed as candidate vaccine prototypes (rJEV/ZIKV, rJEV/ZIKV, and rJEV/ZIKV), in which the two neutralizing antibody-inducing prM and E genes from each of three genetically distinct ZIKV strains were used to replace the corresponding genes of the clinically proven live-attenuated Japanese encephalitis virus vaccine SA-14-2 (rJEV). In WHO-certified Vero cells (a cell line suitable for vaccine production), rJEV/ZIKV exhibited the slowest viral growth, formed the smallest plaques, and displayed a unique protein expression profile with the highest ratio of prM to cleaved M when compared to the other two chimeric viruses, rJEV/ZIKV and rJEV/ZIKV, as well as their vector, rJEV.

View Article and Find Full Text PDF

Viral vector delivery of gene therapy represents a promising approach for the treatment of numerous retinal diseases. Adeno-associated viral vectors (AAV) constitute the primary gene delivery platform; however, their limited cargo capacity restricts the delivery of several clinically relevant retinal genes. In this study, we explore the feasibility of employing high-capacity adenoviral vectors (HC-AdVs) as alternative delivery vehicles, which, with a capacity of up to 36 kb, can potentially accommodate all known retinal gene coding sequences.

View Article and Find Full Text PDF

Recovering the relaxation spectrum, a fundamental rheological characteristic of polymers, from experiment data requires special identification methods since it is a difficult ill-posed inverse problem. Recently, a new approach relating the identification index directly with a completely unknown real relaxation spectrum has been proposed. The integral square error of the relaxation spectrum model was applied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!