We studied the lung diffusion parameters of two species of birds and two species of mammals to explore how structural and functional features may be paralleled by differences in life style or phylogenetic origin. We used two fast-flying species (one mammal and one bird), one running mammal and one bird species that flies only occasionally as models. The harmonic mean thickness of the air-blood barrier was very thin in the species we studied. An exception was the Chilean tinamou Notoprocta perdicaria, which only flies occasionally. It showed an air-blood barrier as thick as that of flightless Galliformes. We found that the respiratory surface density was significantly greater in flying species compared to running species. The estimated values for the oxygen diffusion capacity, DtO2 follow the same pattern: the highest values were obtained in the flying species, the bat and the eared dove. The lowest value was in N. perdicaria. Our findings suggest that the studied species show refinements in their morphometric lung parameters commensurate to their energetic requirements as dictated by their mode of locomotion, rather than their phylogenetic origin. The air-blood barrier appears to be thin in most birds and small mammals, except those with low energetic requirements such as the Chilean tinamou. In the species we studied, the respiratory surface density appears to be the factor most responsive to the energetic requirements of flight.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4067/s0716-97602007000200010 | DOI Listing |
Se Pu
January 2025
School of Public Health, Wuhan University, Wuhan 430071, China.
Industrialization has led to significant increases in the types and quantities of pollutants, with environmental pollutants widely present in various media, including the air, food, and everyday items. These pollutants can enter the human body via multiple pathways, including ingestion through food and absorption through the skin; this intrusion can disrupt the production, release, and circulation of hormones in the body, resulting in a range of illnesses that affect the reproductive, endocrine, and nervous systems. Consequently, these pollutants pose substantial risks to human health.
View Article and Find Full Text PDFSmall
December 2024
Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China.
Mitochondrial dysfunction plays an important role in neuroinflammation and cognitive impairment in Alzheimer's disease (AD). Herein, this work designs a mitochondria-targeted micelle CsA-TK-SS-31 (CTS) to block the progression of AD by simultaneously alleviating mitochondrial dysfunction in microglia and neurons. The mitochondria-targeted peptide SS-31 drives cyclosporin A (CsA) to penetrate the blood-brain barrier (BBB) and delivers CsA to mitochondria of microglia and neurons in the brains of 5 × FAD mice.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy.
Endocrine-disrupting chemicals (EDCs) are a growing health hazard for humankind and respiratory health in particular. Such chemical compounds are present in the environment and food and may interfere with physiological processes through interference with functions of the endocrine system, making humans more susceptible to various types of diseases. This review aims to discuss the effects of EDCs on the respiratory system.
View Article and Find Full Text PDFBackground: Seawater drowning (SWD) has been an escalating hazard in recent years. It can not only cause immediate death but can also inflict severe complications, such as acute lung injury (ALI), which greatly increases the mortality rate. Thus, investigating the mechanism of SWD induced lung injury and discovering effective treatments is of great importance.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China; Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, Fujian 361005, China. Electronic address:
The etiology and mechanism causing Age-related hearing loss (ARHL) are not understood. This study aimed to investigate the molecular mechanism of interleukin 8 (IL-8) associated with ARHL. Sera content of IL-8 was significantly higher in patients with ARHL than normal volunteers and had a positive association with disease severity of ARHL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!