A ring self-pumped phase-conjugate mirror with rhodium-doped barium titanate is used to correct aberrations in a laser-diode-pumped zigzag slab Nd:YAG oscillator-amplifier system. A diffraction-limited output of 360 mJ is achieved in a 36-ns pulse duration at a repetition rate of 100 Hz.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.25.000481 | DOI Listing |
We present an approach for realizing a superluminal ring laser using a single isotope of atomic Rb vapor by producing electromagnetically induced transparency (EIT) in self-pumped Raman gain. Only a single pump laser is used for generating a Raman gain profile containing a dip at its center. The position and depth of this dip can be tuned by adjusting the intensity of the pump laser, allowing for optimizing the degree of enhancement in sensitivity within a certain operating range.
View Article and Find Full Text PDFTime-energy entangled photon pairs are fundamental resources for quantum communication protocols since they are robust against environmental fluctuations in optical fiber networks. Pair sources based on spontaneous four-wave mixing in silicon microring resonators usually employ expensive external tunable lasers to compensate for ambient fluctuations; adopting self-pumped configurations, instead, lifts the need for such external source. Here we demonstrate the emission of time-energy entangled photon pairs at telecom wavelengths from a silicon self-pumped ring, obtaining a Franson interference fringe with 93.
View Article and Find Full Text PDFWe have designed and fabricated a monolithic semiconductor ring laser based on a Bragg waveguide structure. Through careful control of the waveguiding, we have overcome the inherent "leaky" nature of this waveguide mode and demonstrated a ring laser lasing in the Bragg mode. Best behavior was obtained from lasers with a diameter of 400 µm, where they exhibited output power ${ \gt }{1}\;{\rm mW}$>1mW, in continuous wave (CW) operation.
View Article and Find Full Text PDFWe demonstrate experimentally a superluminal ring laser based on optically pumped Raman gain, and a self-pumped Raman depletion for producing anomalous dispersion, employing two isotopes of rubidium. By fitting the experiment data with the theoretical model, we infer that the spectral sensitivity of the superluminal Raman laser to cavity length change is enhanced by a factor of more than a thousand, compared to a conventional laser.
View Article and Find Full Text PDFThis paper proposes and demonstrates a novel method to produce the narrow-bandwidth, narrow-pulse-width and high-repetition-rate pulses with actively Q-switched ring-cavity all-fiber lasers. By using a specially designed low-reflectivity cladding power stripper in the cavity, and inserting a length-optimized ytterbium-doped single-cladding fiber self-pumped by the backward amplified spontaneous emission (ASE) from the YDF to improve the amplification of the initial weak ASE feedback by the narrowband filter, the ASE gain self-saturation can be suppressed efficiently, and the lasing pulses can be established quickly within the opening time of Q-switch even operating for very high repetition-rate. With the proposed technique, watt-level Q-switched pulses with bandwidth and pulse width narrowed to 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!