A stability limit for the atmospheres of giant extrasolar planets.

Nature

Atmospheric Physics Laboratory, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.

Published: December 2007

Recent observations of the planet HD209458b indicate that it is surrounded by an expanded atmosphere of atomic hydrogen that is escaping hydrodynamically. Theoretically, it has been shown that such escape is possible at least inside an orbit of 0.1 au (refs 4 and 5), and also that H3+ ions play a crucial role in cooling the upper atmosphere. Jupiter's atmosphere is stable, so somewhere between 5 and 0.1 au there must be a crossover between stability and instability. Here we show that there is a sharp breakdown in atmospheric stability between 0.14 and 0.16 au for a Jupiter-like planet orbiting a solar-type star. These results are in contrast to earlier modelling that implied much higher thermospheric temperatures and more significant evaporation farther from the star. (We use a three-dimensional, time-dependent coupled thermosphere-ionosphere model and properly include cooling by H3+ ions, allowing us to model globally the redistribution of heat and changes in molecular composition.) Between 0.2 and 0.16 au cooling by H3+ ions balances heating by the star, but inside 0.16 au molecular hydrogen dissociates thermally, suppressing the formation of H3+ and effectively shutting down that mode of cooling.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature06378DOI Listing

Publication Analysis

Top Keywords

h3+ ions
12
cooling h3+
8
stability limit
4
limit atmospheres
4
atmospheres giant
4
giant extrasolar
4
extrasolar planets
4
planets observations
4
observations planet
4
planet hd209458b
4

Similar Publications

Background: Chordoma is a slow-growing, primary malignant bone tumor that arises from notochordal tissue in the midline of the axial skeleton. Surgical excision with negative margins is the mainstay of treatment, but high local recurrence rates are reported even with negative margins. High-dose radiation therapy (RT), such as with proton or carbon ions, has been used as an alternative to surgery, but late local failure remains a problem.

View Article and Find Full Text PDF

Characterization of a simple gas expansion ion source for intense pulses of subthermal molecular ions.

Rev Sci Instrum

January 2025

Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany.

We describe a simple gas expansion ion source based on static discharge voltages and a commercially available pulsed valve. The discharge is initiated by the gas pulse itself between two high voltage electrodes, without the need for fast voltage switches or complex timing schemes. The ion source very reliably produces intense bursts of molecular ions (with currents exceeding 100 μA during the pulse-on phase) with only minor pulse-to-pulse variations in intensity and pulse shape.

View Article and Find Full Text PDF

Nickel-rich cobalt-free layered oxide cathode with Ni contents no fewer than 90 % has received extensive attention in the field of lithium-ion batteries due to its excellent specific capacity and low cost, but serious capacity degeneration induced by structural deterioration and interfacial instability greatly hamper their further development. Herein, the Sb-modified LiNiMnO materials from the interface to interior have been designed and fabricated to overcome the above issues. On the one hand, the introduction of Sb-ion in interior of grains can generate Sb-O chemical bond with high dissociation energy, which contributes to reinforce the chemical and structural stability.

View Article and Find Full Text PDF

Mechanistic Understanding of the pH-Dependent Oxygen Reduction Reaction on the Fe-N-C Surface: Linking Surface Charge to Adsorbed Oxygen-Containing Species.

ACS Appl Mater Interfaces

January 2025

Center of Nanomaterials for Renewable Energy (CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.

The Fe-N-C catalyst, featuring a single-atom Fe-N configuration, is regarded as one of the most promising catalytic materials for the oxygen reduction reaction (ORR). However, the significant activity difference under acidic and alkaline conditions of Fe-N-C remains a long-standing puzzle. In this work, using extensive ab initio molecular dynamics (AIMD) simulations, we revealed that pH conditions influence ORR activity by tuning the surface charge density of the Fe-N-C surface, rather than through the direct involvement of HO or OH ions.

View Article and Find Full Text PDF

In the binuclear title complex, [La(CHO)(CHN)(HO)](NO)·0.5HO, the two lanthanum ions are nine coordinate in a distorted trigonal-prismatic geometry. Each La ion is bonded to three N atoms of the Schiff base, 1-(pyridin-2-yl)-2-(pyridin-2-yl-methyl-ene)hydrazine and is coordinated by one acetate group, which acts in -bidentate mode and two acetate groups that act in -mode between the two La ions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!