Fine thermal structure of a coronal active region.

Science

Dipartimento di Scienze Fisiche ed Astronomiche, Sezione di Astronomia, Università di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy.

Published: December 2007

The determination of the fine thermal structure of the solar corona is fundamental to constraining the coronal heating mechanisms. The Hinode X-ray Telescope collected images of the solar corona in different passbands, thus providing temperature diagnostics through energy ratios. By combining different filters to optimize the signal-to-noise ratio, we observed a coronal active region in five filters, revealing a highly thermally structured corona: very fine structures in the core of the region and on a larger scale further away. We observed continuous thermal distribution along the coronal loops, as well as entangled structures, and variations of thermal structuring along the line of sight.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1146590DOI Listing

Publication Analysis

Top Keywords

fine thermal
8
thermal structure
8
coronal active
8
active region
8
solar corona
8
coronal
4
structure coronal
4
region determination
4
determination fine
4
structure solar
4

Similar Publications

Integrative analysis of the impact of N/CO on gabaron oolong tea aroma.

Food Res Int

February 2025

State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China. Electronic address:

This study aimed to investigate the effect of the combination of shaking and various anaerobic treatments on the aroma quality of gabaron oolong tea (GAOT) by chemical and sensory evaluation. The results showed that elevated anaerobic treatment harmed GAOT aroma, emphasizing undesirable attributes such as earthy, fatty, etc. A total of 85 volatiles were identified by gas chromatography-ion mobility spectrometry (GC-IMS), and the relationship between aroma attributes and volatiles were revealed by PLS regression projection and correlation network.

View Article and Find Full Text PDF

Extreme ultraviolet (EUV) lithography has enabled significant reductions in device dimensions but is often limited by capillary force-driven pattern collapse in conventional wet processes. Recent dry-development approaches, while promising, frequently require toxic etchants or specialized equipment, limiting their broader applicability and highlighting the need for more sustainable, cost-effective alternatives. In this study, highly reactive, etchant-free dry-developable EUV photoresists using N-heterocyclic carbene (NHC)-based metal-ligand complexes, achieving half-saturation at EUV doses of 8.

View Article and Find Full Text PDF

Thermochromic smart windows have been widely developed for building energy saving. However, most smart windows suffer from limited energy-saving performance, fixed phase transition temperature, and are not suitable for the temperature regulation needs of different application scenarios. Herein, a unique self-adaptive thermochromic hydrogel (HBPEC-PNA) with self-moisture-absorbing performance is reported that assembles solar energy cooling and evaporative heat dissipation.

View Article and Find Full Text PDF

In this study, we synthesized a water-based, rosin-modified, polymerized oil (WRPO) an addition and polymerization reaction of dehydrated castor oil (DCO), rosin acid (RA), zinc resinate (ZR) and dehydrated castor oil acid (DCOA). Addition and polymerization reactions at 240 °C, followed by neutralization with ammonia, dissolution into butyl alcohol and subsequent dilution with water, were performed at varying DCOA contents of 10%, 20%, 30%, 35% and 40%. WRPO was mixed with butoxymethylmelamine (BMM), a curing agent, at a weight ratio of 80 : 20, and then cured for 2 hours at 130 °C.

View Article and Find Full Text PDF

Enhancing efficiency and stability in perovskite solar cells: innovations in self-assembled monolayers.

Front Chem

January 2025

Key laboratory of Rubber-Plastic of Ministry of Education /Shandong Province (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China.

Perovskite solar cells (PVSCs) show remarkable potential due to their high-power conversion efficiencies and scalability. However, challenges related to stability and long-term performance remain significant. Self-assembled monolayers (SAMs) have emerged as a crucial solution, enhancing interfacial properties, facilitating hole extraction, and minimizing non-radiative recombination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!