Progesterone induces decidual transformation of estrogen-primed human endometrial stromal cells (hESCs), critical for implantation and maintenance of pregnancy, through activation of many signaling pathways involving protein kinase A and signal transducer and activator of transcription (STAT)-5. We have previously shown that kinase activation of v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (SRC) kinase is closely associated with decidualization and that SRC is indispensable for maximal decidualization in mice. To address whether SRC kinase activity is essential for decidualization in humans, hESCs were infected with adenoviruses carrying enhanced green fluorescent protein alone (Ad-EGFP), a kinase-inactive dominant-negative mutant (Ad-SRC/K295R), or an inactive autophosphorylation site mutant (Ad-SRC/Y416F). The cells were cultured in the presence of estradiol and progesterone (EP) to induce decidualization and subjected to RT-PCR, immunoblot, and ELISA analyses. Ad-EGFP-infected hESCs exhibited decidual transformation and up-regulation of decidualization markers including IGF binding protein 1 and prolactin in response to 12-d treatment with EP. In contrast, hESCs infected with Ad-SRC/K295R remained morphologically fibroblastoid without production of IGF binding protein 1 and prolactin even after EP treatment. Ad-SRC/Y416F displayed similar but less inhibitory effects on decidualization, compared with Ad-SRC/K295R. During decidualization, STAT5 was phosphorylated on tyrosine 694, a well-known SRC phosphorylation site. Phosphorylation was markedly attenuated by Ad-SRC/K295R but not Ad-EGFP. These results indicate that the SRC-STAT5 pathway is essential for decidualization of hESCs.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2007-1217DOI Listing

Publication Analysis

Top Keywords

src kinase
12
decidual transformation
12
signal transducer
8
transducer activator
8
human endometrial
8
endometrial stromal
8
stromal cells
8
decidualization
8
essential decidualization
8
hescs infected
8

Similar Publications

Background: The TREAT-AD centers aim to improve Alzheimer's Disease (AD) research by offering free, high-quality tools and technologies. Lyn is a tyrosine kinase that belongs to the Src family kinases. The expression of Lyn and its activity have been implicated in AD.

View Article and Find Full Text PDF

Background: Lyn kinase, a member of the Src family of tyrosine kinases, predominantly phosphorylates ITIM and ITAM motifs linked to immune receptors and adaptor proteins, and is emerging as a target for Alzheimer's disease (AD). The role of Lyn in TREM2-mediated microglial activation and phagocytosis, a critical pathway for clearing Aβ plaques, remains unclear and potent, selective, and brain penetrant Lyn inhibitors are unavailable. In this study, we report the characterization of Lyn kinase inhibitors from the literature as well as the establishment of an advanced virtual screening platform at the IUSM-Purdue-TREAT-AD center to identify new type II Lyn inhibitors suitable as molecular probes.

View Article and Find Full Text PDF

CD28 shapes T cell receptor signaling by regulating Lck dynamics and ZAP70 activation.

Front Immunol

January 2025

Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.

Introduction: T cell activation requires T cell receptor (TCR) engagement by its specific ligand. This interaction initiates a series of proximal events including tyrosine phosphorylation of the CD3 and TCRζ chains, recruitment, and activation of the protein tyrosine kinases Lck and ZAP70, followed by recruitment of adapter and signaling proteins. CD28 co-stimulation is also required to generate a functional immune response.

View Article and Find Full Text PDF

Prevention of radiotherapy-induced pro-tumorigenic microenvironment by SFK inhibitors.

Theranostics

January 2025

College of Pharmacy, Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea.

Radiotherapy is a widely employed technique for eradication of tumor using high-energy beams, and has been applied to approximately 50% of all solid tumor patients. However, its non-specific, cell-killing property leads to inevitable damage to surrounding normal tissues. Recent findings suggest that radiotherapy-induced tissue damage contributes to the formation of a pro-tumorigenic microenvironment.

View Article and Find Full Text PDF

Philadelphia chromosome-like B-cell acute lymphoblastic leukemia (Ph-like ALL) is driven by genetic alterations that induce constitutive kinase signaling and is associated with chemoresistance and high relapse risk in children and adults. Preclinical studies in the most common CRLF2-rearranged/JAK pathway-activated Ph-like ALL subtype have shown variable responses to JAK inhibitor-based therapies, suggesting incomplete oncogene addiction and highlighting a need to elucidate alternative biologic dependencies and therapeutic vulnerabilities, while the ABL-class Ph-like ALL subtype appears preferentially sensitive to SRC/ABL- or PDGFRB-targeting inhibitors. Which patients may be responsive versus resistant to tyrosine kinase inhibitor (TKI)-based precision medicine approaches remains a critical knowledge gap.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!