Recent evidence suggests the existence of a stem cell-like subpopulation of cells in hematological and solid tumor entities, which determine the malignant phenotype of a given tumor through their proliferative potential and chemotherapy resistance. A recently used technique for the isolation of this cell population is through exclusion of the vital dye Hoechst 33342, which defines the so-called side population (SP). Herein we demonstrate the presence of SP cells in a variety of adrenal specimens, including primary cultures of human adrenocortical tumors and normal adrenal glands as well as established human and murine adrenocortical cancer cell lines by fluorescence-activated cell sorter analysis and confocal microscopy. On a functional level, SP cells from the human adrenocortical tumor cell line NCI h295R revealed an expression pattern consistent with a less differentiated phenotype, including lower expression of steroidogenic enzymes such as steroid acute regulatory protein (StAR) and side-chain cleavage enzyme (P450scc) in comparison with non-SP cells. However, proliferation between SP and non-SP cells did not differ (105.6 +/- 18.1 vs. 100.0 +/- 3.5%). Furthermore, re-sorting and tracing experiments revealed the capacity for both cell types to give rise to the original SP- and non-SP-containing cell population. Similarly to the baseline growth kinetics, no survival benefit was evident in SP cells after treatment with cytotoxic agents commonly used in adrenocortical carcinomas. Taken together, these findings provide evidence that Hoechst dye exclusion, in contrast to what has been reported for other tumor entities, is not a major tumor stem cell defining marker in adrenocortical NCI h295R tumor cells.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2007-1001DOI Listing

Publication Analysis

Top Keywords

nci h295r
12
side population
8
stem cell-like
8
cells
8
cell
8
cell nci
8
tumor entities
8
cell population
8
human adrenocortical
8
non-sp cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!