The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment. Non-mycorrhizal and zero-P addition controls were included. Plant biomass and concentrations and uptake of As, P, and other nutrients, AM colonization, root lengths, and hyphal length densities were determined. The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium. Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments, but shoot and root biomass of AM plants was depressed by P application. AM fungal inoculation decreased shoot As concentrations when no P was added, and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition, respectively. Shoot and root uptake of P, Mn, Cu, and Zn increased, but shoot Fe uptake decreased by 44.6%, with inoculation, when P was added. P addition reduced shoot P, Fe, Mn, Cu, and Zn uptake of AM plants, but increased root Fe and Mn uptake of the nonmycorrhizal ones. AM colonization therefore appeared to enhance plant tolerance to As in low P soil, and have some potential for the phytostabilization of As-contaminated soil, however, P application may introduce additional environmental risk by increasing soil As mobility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1001-0742(07)60203-4DOI Listing

Publication Analysis

Top Keywords

shoot root
12
arsenic uptake
8
arbuscular mycorrhizal
8
zea mays
8
as-contaminated soil
8
plants increased
8
root uptake
8
shoot uptake
8
root
7
soil
6

Similar Publications

Background: Amalgamation of metal-tolerant plant growth promoting rhizobacteria (PGPR) with biochar is a promising direction for the development of chemical-free biofertilizers that can mitigate environmental risks, enhance crop productivity and their biological value. The main objective of the work includes the evaluation of the influence of prepared bacterial biofertilizer (BF) on biometric growth parameters as well as physiological and biochemical characteristics of rapeseed ( L.) at copper action.

View Article and Find Full Text PDF

Bur., a versatile plant with medicinal, edible, landscaping, and ecological applications, holds significant economic value and boasts a long-standing history of utilization in China. Despite its robust adaptability, rapid growth, and extensive distribution, the current research gap concerning the physiological mechanisms underlying stem cutting propagation hampers the development of efficient strategies for commercial-scale propagation of , particularly for large-scale cultivation.

View Article and Find Full Text PDF

Arsenic (As) is a non-essential carcinogenic metalloid and an issue of concern for rice crops. This study investigated the effects of sulfur-loaded tea waste biochar (TWB) due to modification with sodium sulfide (SSTWB) or thiourea (TUTWB) on As stress and accumulation in rice plants. The results showed that sulfur-modified TWB improved plant morphology compared to plants grown in As-contaminated soil alone.

View Article and Find Full Text PDF

Zea mays L. (Maize) is one of the most crucial world's crops, for their nutritional values, however, the water scarcity and consequent soil salinization are the major challenges that limit the growth and productivity of this plant, particularly in the semi-arid regions in Egypt. Recently, biopriming has been recognized as one of the most efficient natural-ecofriendly approaches to mitigate the abiotic salt stress on plants.

View Article and Find Full Text PDF

The diffusive gradient in thin films technique (DGT), with a resin gel based on Lewatit® FO 36 was used for the first time to predict arsenic (As) bioavailability in soils collected in different environmental contexts. The predicted bioavailability, determined by fluxes to DGT, was compared with the bioavailability and bioaccumulation in the plants (Calendula officinalis), where a strong correlation was observed (r = 0.8857 (C/C) and r = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!