Joint effects of temperature and oxygen concentrations for the results of sediment toxicity tests were studied at 10 and 20 degrees C with 40% and 80% dissolved oxygen (DO) saturation. Growth, feeding rate, and reproduction of Lumbriculus variegatus (Oligochaete) and growth, emergence, and survival of Chironomus riparius (Diptera) were tested in a polluted and in a reference sediment. Both the feeding of L. variegatus and the emergence of C. riparius were significantly retarded at low temperature. Additionally, differences in the sex ratio of the emerged adults of C. riparius were observed. The oxygen concentration alone did not have any significant effect on the endpoints, but significant combined effects of polluted sediment and low DO were observed on the biomass of L. variegatus. The standard sediment toxicity tests might offer only limited data for risk assessment of contaminated sediments at sites where the actual conditions largely differ from the laboratory conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2007.06.004 | DOI Listing |
Mar Pollut Bull
January 2025
Facultad de Pesquería, Universidad Nacional Agraria La Molina, Av. La Molina S/N, La Molina, Lima 15024, Peru.
Paracas Bay, located in the Humboldt Current system, is a highly variable coastal environment where hypoxia (dissolved oxygen concentrations <2 mg L) has been reported as a persistent feature of bottom conditions. In addition to hypoxia, milky water events have been reported in the bay, most likely associated with the presence of sulfides (i.e.
View Article and Find Full Text PDFPart Fibre Toxicol
January 2025
Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, 30 S. 2000 E., Room 201 Skaggs Hall, Salt Lake City, UT, 84112, USA.
Background: Climate change and human activities have caused the drying of marine environments around the world. An example is the Great Salt Lake in Utah, USA which is at a near record low water level. Adverse health effects have been associated with exposure to windblown dust originating from dried lakebed sediments, but mechanistic studies evaluating the health effects of these dusts are limited.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Department of Chemical Oceanography, Cochin University of Science and Technology, Cochin 682016, India. Electronic address:
This study examines the presence of potentially toxic elements (PTEs) in the surface sediments and water of the Ashtamudi wetland, a Ramsar site on India's southwest coast. The average concentration of PTEs in water(μg/L) and in sediments (mg/kg) follows the order Fe(147.89) > Zn(107.
View Article and Find Full Text PDFWater Res
January 2025
CAS Key Laboratory of Mountain Ecological Restoration and Bio-resources Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China. Electronic address:
Microplastics (MPs) in aquatic environments has been observed globally. However, the ecological risks of MP pollution in riverhead prior to highly urbanized region remain poorly understood. This study investigated MP pollution related to microbiome in sediments, and ecological risks of MPs in riverhead prior to urbanized area over 291 km of Minjiang River (MJR) in Qinghai-Tibetan Plateau (QTP).
View Article and Find Full Text PDFSci Total Environ
January 2025
College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China. Electronic address:
Mangrove sediments in southern China are a large reservoir for microplastics (MPs). In particular, polyethylene microplastics (PE-MPs) are environmentally toxic and have accumulated in large quantities in these sediments, posing a potential threat to the overall mangrove and the organisms that inhabit it. We screened sediments from 5 mangrove sites and identified a potential source of PE-MP degrading bacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!