We provide new information relevant to the crystallinity and growth mechanism of magnetite particles that were fabricated following the method of Sugimoto and Matijević [J. Colloid Interface Sci. 74 (1980) 227]. These authors observed that in a small excess of Fe(2+), particles grew by aggregation and recrystallization of smaller units, so that until now the resulting particles were thought to be polycrystalline. With the help of transmission electron microscopy (TEM) and selected area electron diffraction (SAED), we also detected the presence of monocrystalline particles, which are strong evidence of the occurrence of direct crystal growth. This growth mechanism seems to coexist with that of the aggregation of primary units proposed by Sugimoto and Matijević. Careful examination of electron microscopy micrographs also revealed the presence of many hollow polycrystalline microspheres.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2007.11.003 | DOI Listing |
J Phys Chem Lett
January 2025
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
Electrochemical nitrogen conversion for ammonia (NH) synthesis, driven by renewable electricity, offers a sustainable alternative to the traditional Haber-Bosch process. However, this conversion process remains limited by a low Faradaic efficiency (FE) and NH yield. Although transition metals have been widely studied as catalysts for NH synthesis through effective electron donation/back-donation mechanisms, there are challenges in electrochemical environments, including competitive hydrogen evolution reaction (HER) and catalyst stability issues.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Restorative Dentistry, Recep Tayyip Erdoğan University, Rize, Turkey.
Objectives: The aim of this systematic review and network meta-analysis was to compare the flexural strength of provisional fixed dental prostheses (PFDPs) fabricated using different 3D printing technologies, including digital light processing (DLP), stereolithography (SLA), liquid crystal display (LCD), selective laser sintering (SLS), Digital Light Synthesis (DLS), and fused deposition modeling (FDM).
Materials And Methods: A comprehensive literature search was conducted in databases including PubMed, Web of Science, Scopus, and Open Grey up to September 2024. Studies evaluating the flexural strength of PFDPs fabricated by 3D printing systems were included.
Phys Med Biol
January 2025
Institute of High Energy Physics Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing, Beijing, Beijing, 100049, CHINA.
Objective: Timing calibration is essential for positron emission tomography (PET) system as it enhances timing resolution to improve image quality. Traditionally, positron sources are employed for timing calibration. However, the photons emitted by these sources travel in opposite directions, necessitating that positrons annihilate at multiple locations to collect coincidence data across a greater number of lines of response (LORs).
View Article and Find Full Text PDFChemistry
January 2025
University of Delaware, Chemistry and Biochemistry, UNITED STATES OF AMERICA.
We describe synthesis of BN-doped nanographene containing five phenylene units, boron and nitrogen atoms with both alternating ortho-disposition as well as direct B-N connection. Resulting BN doped nanographene exhibits blue fluorescence at 441 nm with extraordinary narrow fluorescence peak with full width at half maximum (FWHM) = 10-11 nm. Crystallography reveals supramolecular organization of this compound in the crystal phase.
View Article and Find Full Text PDFSmall
January 2025
Dept. of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
Transient amorphous phases are known as functional precursors in the formation of crystalline materials, both in vivo and in vitro. A common route to regulate amorphous calcium carbonate (ACC) crystallization is via direct interactions with negatively charged macromolecules. However, a less explored phenomenon that can influence such systems is the electrostatically driven formation of Ca-macromolecule dense phases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!