Hypoxia-inducible factor-1alpha (HIF-1alpha) is the regulatory subunit of the transcription factor HIF-1, which is highly involved in the pathology of diseases associated with tissue hypoxia. In this study we investigated the ability of plant flavonoids to induce HIF-1alpha and regulate HIF-1 transcriptional activity in HeLa cells. We demonstrate for the first time that the flavonoids baicalein, luteolin and fisetin, as well as the previously investigated quercetin, induce HIF-1alpha under normal oxygen pressure, whereas kaempferol, taxifolin, and rutin are inactive. We further reveal that the capability of flavonoids to bind efficiently intracellular iron and their lipophilicity are essential for HIF-1alpha induction. Despite the ability of flavonoids to stabilize HIF-1alpha, the transcriptional activity of HIF-1 induced by flavonoids was significantly lower than that observed with the iron chelator and known HIF-1 inducer, desferrioxamine (DFO). Furthermore, when cells in which HIF-1 had been induced by DFO were also treated with flavonoids, the transcriptional activity of HIF-1 was strongly impaired without simultaneous reduction in HIF-1alpha protein levels. Localization of HIF-1alpha by immuno- and direct fluorescence microscopy and in vitro phosphorylation assays suggest that flavonoids inhibit HIF-1 activity by impairing the MAPK-dependent phosphorylation of HIF-1alpha, thereby decreasing its nuclear accumulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2007.10.050 | DOI Listing |
J Cancer Prev
December 2024
Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea.
Prolyl hydroxylase domain 2 (PHD2) is the primary oxygen sensing enzyme involved in hydroxylation of hypoxia-inducible factor (HIF). Under normoxic conditions, PHD2 hydroxylates specific proline residues in HIF-1α and HIF-2α, promoting their ubiquitination and subsequent proteasomal degradation. Although PHD2 activity decreases in hypoxia, notable residual activity persists, but its function in these conditions remains unclear Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) targets proteins with phosphorylated serine/threonine-proline (pSer/Thr-Pro) motifs.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory of Biochemistry, College of Veterinary Medicine, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Korea.
The mechanisms underlying exercise-induced insulin sensitization are of great interest, as exercise is a clinically critical intervention for diabetic patients. Some microRNAs (miRs) are secreted from skeletal muscle after exercise where they regulate insulin sensitivity, and have potential as diagnostic markers in diabetic patients. miR-204 is well-known for its involvement in development, cancer, and metabolism; however, its role in exercise-induced glycemic control remains unclear.
View Article and Find Full Text PDFCell Host Microbe
January 2025
The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland; UCD School of Medicine, University College Dublin, Dublin, Ireland. Electronic address:
Intestinal fibrosis associated with Crohn's disease is a serious yet poorly understood clinical complication. In this issue of Cell Host & Microbe, Ahn and colleagues provide evidence that the adherent intestinal E. coli produced the metallophore yersiniabactin, which sequesters zinc to drive intestinal fibrosis in a HIF-1α-dependent manner.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China. Electronic address:
Tris(2-chloroethyl) phosphate, an extensively used organophosphorus flame retardant in consumer products, has caused pervasive environmental contamination and increased human exposure, raising concerns about its cardiotoxic potential. However, the detailed toxicological profile, particularly concerning the crucial cardiac energy metabolism, and the precise mechanisms remain poorly understood. This study in C57BL/6 J mice exposed to TCEP for 36 days at varying doses revealed cardiac dysfunction, structural abnormalities, and hypoxia.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Purpose: Corneal alkali burns are severe ocular injuries characterized by intense inflammation, tissue damage, and vision impairment, with current treatments often insufficient in restoring corneal function and clarity. This study aimed to evaluate the therapeutic effects of recombinant thrombomodulin domain 1 (rTMD1) in the treatment of corneal alkali burns, focusing on its impact on inflammation, tissue repair, fibrosis, and neovascularization.
Methods: A murine model of corneal alkali burn was utilized to investigate the therapeutic potential of rTMD1.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!