Antagonists at presynaptic muscarinic autoreceptors increase endogenous acetylcholine (ACh) release and enhance cognition but little is known regarding their actions on plasticity at glutamatergic synapses. Here the mechanisms of the persistent enhancement of hippocampal excitatory transmission induced by the M2/M4 muscarinic ACh receptor antagonist methoctramine were investigated in vivo. The persistent facilitatory effect of i.c.v. methoctramine in the CA1 region of urethane-anesthetized rats was mimicked by gallamine, an M2 receptor antagonist, supporting a role for this receptor subtype. Neither the N-methyl-D-aspartate (NMDA) receptor antagonists D-(-)-2-amino phosphonopentanoic acid (d-AP5) and memantine, nor the metabotropic glutamate receptor subtype 1a antagonist (S)-(+)-alpha-amino-4-carboxy-2-methylbenzeneacetic acid (LY367385) significantly affected the methoctramine-induced persistent synaptic enhancement, indicating a lack of requirement for these glutamate receptors. The selective kinase inhibitors Rp-adenosine-3', 5'-cyclic monophosphorothioate (Rp-cAMPS) and the myrostylated pseudosubstrate peptide, Myr-Ser-Ile-Tyr-Arg-Arg-Gly-Ala-Arg-Arg-Trp-Arg-Lys-Leu-OH (ZIP), were used to investigate the roles of protein kinase A (PKA) and the atypical protein kinase C, protein kinase Mzeta (PKM zeta), respectively. Remarkably, pretreatment with either agent prevented the induction of the persistent synaptic enhancement by methoctramine and post-methoctramine treatment with Rp-cAMPS transiently reversed the enhancement. These findings are strong evidence that antagonism of M2 muscarinic ACh receptors in vivo induces an NMDA receptor-independent persistent synaptic enhancement that requires activation of both PKA and PKM zeta.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2007.10.016 | DOI Listing |
iScience
January 2025
Department of Immunology, Tokyo Medical University, Tokyo 160-8402, Japan.
A co-signaling receptor, 2B4, has dual effects in immune cells, but its actual functions in T cells remain elusive. Here, using super-resolution imaging technology with an immunological synapse model, we showed that 2B4 forms "2B4 microclusters" immediately after 2B4-CD48 binding. A lipid phosphatase, SHIP-1, subsequently combined with 2B4 to form coinhibitory signalosomes, leading to the suppression of cytokine production.
View Article and Find Full Text PDFiScience
January 2025
Liver Cancer Institute and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, P.R. China.
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer with poor prognosis. Sorafenib, a first-line treatment for advanced HCC, has shown limited clinical benefits due to the onset of drug resistance. Thus, it is imperative to comprehend the mechanisms underlying sorafenib resistance and explore strategies to overcome or delay it.
View Article and Find Full Text PDFiScience
January 2025
Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA.
How cells respond to dynamic environmental changes is crucial for understanding fundamental biological processes and cell physiology. In this study, we developed an experimental and quantitative analytical framework to explore how dynamic stress gradients that change over time regulate cellular volume, signaling activation, and growth phenotypes. Our findings reveal that gradual stress conditions substantially enhance cell growth compared to conventional acute stress.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Endocrinology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
Background: The aim of this study was to investigate the impact of diabetes on mortality and adverse outcomes in COVID-19 patients and to analyse the associated risk factors.
Methods: This is a retrospective cohort study in 500 hospitalized patients with COVID-19 infection (214 with diabetes and 286 without diabetes) admitted to a tertiary hospital in China from December 2022 to February 2023. Demographic information, clinical characteristics and outcomes were collected.
J Diabetes Res
January 2025
Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh.
Mushrooms and fenugreek are widely used to reduce hyperglycemia, and fenugreek is also used as a culinary ingredient to enhance flavor and aroma. This study is aimed at investigating the underlying mechanisms of the hypoglycemic effects of mushrooms and fenugreek in a Type 2 diabetic rat model. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) functions to reduce hyperglycemia through insulin-independent pathways and protects beta-cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!