Classic tissue recombination and in vitro lineage tracing studies suggest that condensed metanephric mesenchyme (MM) gives rise to nephronic epithelium of the adult kidney. However, these studies do not distinguish between cap mesenchyme and pre-tubular aggregates comprising the condensed MM, nor do they establish whether these cells have self-renewing capacity. To address these questions, we generated Cited1-CreER(T2) BAC transgenic mice, which express tamoxifen-regulated Cre recombinase exclusively in the cap mesenchyme. Fate mapping was performed by crossing these mice with the Rosa26R(LacZ) reporter line and evaluating the location and cellular characteristics of LacZ positive cells at different time points following tamoxifen injection. These studies confirmed expected results from previous in vitro analysis of MM cell fate, and provide in vivo evidence that the cap mesenchyme does not contribute to collecting duct epithelium in the adult. Furthermore, by exploiting the temporally regulated Cre recombinase, these studies show that nephronic epithelium arising at different stages of nephrogenesis has distinct spatial distribution in the adult kidney, and demonstrate for the first time that the cap mesenchyme includes a population of self-renewing epithelial progenitor cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699557PMC
http://dx.doi.org/10.1016/j.ydbio.2007.10.014DOI Listing

Publication Analysis

Top Keywords

cap mesenchyme
20
fate mapping
8
progenitor cells
8
nephronic epithelium
8
epithelium adult
8
adult kidney
8
cre recombinase
8
mesenchyme
6
cap
5
mapping cited1-creert2
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!