Enzymatic synthesis of dimaltosyl-beta-cyclodextrin via a transglycosylation reaction using TreX, a Sulfolobus solfataricus P2 debranching enzyme.

Biochem Biophys Res Commun

Center for Agricultural Biomaterials, Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Seoul National University, San 56-1, Shillim-dong, Kwanak-gu, Seoul 151-921, Republic of Korea.

Published: February 2008

Di-O-alpha-maltosyl-beta-cyclodextrin ((G2)(2)-beta-CD) was synthesized from 6-O-alpha-maltosyl-beta-cyclodextrin (G2-beta-CD) via a transglycosylation reaction catalyzed by TreX, a debranching enzyme from Sulfolobus solfataricus P2. TreX showed no activity toward glucosyl-beta-CD, but a transfer product (1) was detected when the enzyme was incubated with maltosyl-beta-CD, indicating specificity for a branched glucosyl chain bigger than DP2. Analysis of the structure of the transfer product (1) using MALDI-TOF/MS and isoamylase or glucoamylase treatment revealed it to be dimaltosyl-beta-CD, suggesting that TreX transferred the maltosyl residue of a G2-beta-CD to another molecule of G2-beta-CD by forming an alpha-1,6-glucosidic linkage. When [(14)C]-maltose and maltosyl-beta-CD were reacted with the enzyme, the radiogram showed no labeled dimaltosyl-beta-CD; no condensation product between the two substrates was detected, indicating that the synthesis of dimaltosyl-beta-CD occurred exclusively via transglycosylation of an alpha-1,6-glucosidic linkage. Based on the HPLC elution profile, the transfer product (1) was identified to be isomers of 6(1),6(3)- and 6(1),6(4)-dimaltosyl-beta-CD. Inhibition studies with beta-CD on the transglycosylation activity revealed that beta-CD was a mixed-type inhibitor, with a K(i) value of 55.6 micromol/mL. Thus, dimaltosyl-beta-CD can be more efficiently synthesized by a transglycosylation reaction with TreX in the absence of beta-CD. Our findings suggest that the high yield of (G2)(2)-beta-CD from G2-beta-CD was based on both the transglycosylation action mode and elimination of the inhibitory effect of beta-CD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2007.11.115DOI Listing

Publication Analysis

Top Keywords

transglycosylation reaction
12
transfer product
12
reaction trex
8
sulfolobus solfataricus
8
debranching enzyme
8
alpha-16-glucosidic linkage
8
transglycosylation
6
trex
5
enzymatic synthesis
4
synthesis dimaltosyl-beta-cyclodextrin
4

Similar Publications

We investigated the transglycosylation reaction of two types of oligosaccharide acceptors, i.e., β-cyclodextrin (CD) derivatives 1 and 2 conjugated with multiple glucose (Glc) units, catalyzed by endo-β-N-acetyl-glucosaminidase from Mucor hiemalis (Endo-M) using the oligosaccharide donor sialoglycopeptide (SGP).

View Article and Find Full Text PDF

Structural elucidation and characterization of GH29A α-l-fucosidases and the effect of pH on their transglycosylation.

FEBS J

December 2024

Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark.

Article Synopsis
  • GH29A α-l-fucosidases are enzymes that help break down specific sugars in glycoconjugates and can also be used to create human milk oligosaccharides (HMOs) through a process called transglycosylation.
  • Researchers used bioinformatics tools and phylogenetic clustering to identify and analyze new microbial GH29A α-l-fucosidases from an underexplored group, as well as previously known enzymes, to determine their biochemical properties and behavior under different conditions.
  • The study found that transglycosylation of certain substrates was most effective at neutral to alkaline pH levels and revealed new structural insights into how these enzymes function, particularly regarding regioselectivity in product formation.
View Article and Find Full Text PDF

Action pattern of Sulfolobus O-α-glycoligase for synthesis of highly water soluble resveratrol 3,4'-α-diglucoside.

Enzyme Microb Technol

December 2024

Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea. Electronic address:

This study presents the enzymatic synthesis of resveratrol-3,4'-O-α-diglucoside (RDG) using a hyperactive O-α-glycoligase (MalA-D416R/Q450S) and α-glucopyranosyl fluoride as the donor substrate. The transglycosylation rate for resveratrol by MalA-D416R/Q450S was maximized in 100 mM Tris-HCl (pH 9.5) containing 20 % DMSO at 45°C.

View Article and Find Full Text PDF

Achieving enzymatic food processing at high substrate concentrations can significantly enhance production efficiency; however, related studies are notably insufficient. This study focused on the enzymatic synthesis of fructooligosaccharides (FOS) at high temperature and high substrate concentration. Results revealed that increased viscosity and limited substrate solubility in high-concentration systems could be alleviated by raising the reaction temperature, provided it aligned with the enzyme's thermostability.

View Article and Find Full Text PDF

Engineering a Bifunctional Fusion Purine/Pyrimidine Nucleoside Phosphorylase for the Production of Nucleoside Analogs.

Biomolecules

September 2024

Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, Villaviciosa de Odón, 28670 Madrid, Spain.

Article Synopsis
  • * The study introduces engineered bifunctional fusion enzymes from purine nucleoside phosphorylase I (PNP I) and thymidine phosphorylase (TP), offering a more efficient one-pot synthesis method for nucleosides, as opposed to traditional multi-enzyme systems.
  • * These fusion enzymes operate well at high temperatures (60-90 °C) and specific pH levels (6-8), demonstrating strong stability and successful catalysis for various nucleoside analogs, highlighting their potential in
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!