Background: Exposure to solar UV radiation is the main environmental factor that causes premature aging of the skin. Matrix metalloproteinases (MMP)-1 is a member of the MMP family and degrades types I and III collagens, which are the major structural components of the dermis.

Objective: We evaluated the involvement IL-1beta and macrophage migration inhibitory factor (MIF) in MMP-1 expression under ultraviolet A (UVA) irradiation.

Methods: IL-1beta and MIF in MMP-1 expression in cultured human dermal fibroblasts and the UVA effects on MMPs production using IL-1alpha/beta-deficient mice were analyzed. Furthermore, fibroblasts derived from MIF-deficient mice were used to analyze the effect of IL-1beta-induced MMPs production.

Results: IL-1beta-enhanced MIF expression and induced MMP-1 in cultured human dermal fibroblasts. IL-1beta-induced MMP-1 expression is inhibited by neutralizing anti-MIF antibody. Dermal fibroblasts of IL-1alpha/beta-deficient mice produced significantly decreased levels of MMPs compared to wild-type mice after UVA irradiation. Furthermore, fibroblasts of MIF-deficient mice were much less sensitive to IL-1beta-induced MMPs production. On the contrary, IL-1beta produced significantly decreased levels of MMPs in MIF-deficient mice fibroblasts. The up-regulation of MMP-1 mRNA by IL-1beta stimulation was found to be inhibited by a p38 inhibitor and a JNK inhibitor. In contrast, the MEK inhibitor and inhibitor were found to have little effect on expression of MMP-1 mRNA.

Conclusions: IL-1beta is involved in the up-regulation of UVA-induced MMP-1 in dermal fibroblasts, and IL-1beta and MIF cytokine network induce MMP-1 and contribute to the loss of interstitial collagen in skin photoaging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jdermsci.2007.09.007DOI Listing

Publication Analysis

Top Keywords

dermal fibroblasts
20
mmp-1 expression
12
mif-deficient mice
12
mmp-1
9
macrophage migration
8
migration inhibitory
8
inhibitory factor
8
factor mif
8
fibroblasts
8
mif mmp-1
8

Similar Publications

A promising future for breast cancer therapy with hydroxamic acid-based histone deacetylase inhibitors.

Bioorg Chem

January 2025

Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:

Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.

View Article and Find Full Text PDF

Triggered by the urgent need to tackle the global crisis of multidrug-resistant bacterial infections, in this work, we present a way to overcome chloramphenicol resistance by introducing modifications based on the glycosylation of its hydroxyl groups. The synthesized derivatives demonstrate complete resistance to the action of recombinant chloramphenicol acetyltransferase (CAT) from Escherichia coli and efficacy against methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli ESBL, and Pseudomonas aeruginosa ATCC 27853. Glycosylation gives chloramphenicol an additional advantage - the stable glycosidic form is less toxic to human dermal fibroblasts and has significantly better water solubility than non-glycosylated chloramphenicol.

View Article and Find Full Text PDF

Hydrogels of Poly(2-hydroxyethyl methacrylate) and Poly(N,N-dimethylacrylamide) Interpenetrating Polymer Networks as Dermal Delivery Systems for Dexamethasone.

Pharmaceutics

January 2025

Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria.

: This study is an attempt to reveal the potential of two types of interpenetrating polymer network (IPN) hydrogels based on poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(N,N-dimethylacrylamide) (PDMAM). These IPNs were evaluated for their potential for dermal delivery of the hydrophobic drug dexamethasone (DEX). : The two types of IPNs were analyzed for their rheological behavior, swelling characteristics, and drug-loading capacity with DEX.

View Article and Find Full Text PDF

Polyphenolic Hispolon Derived from Medicinal Mushrooms of the and Genera Promotes Wound Healing in Hyperglycemia-Induced Impairments.

Nutrients

January 2025

Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Yanpu Township 90741, Taiwan.

: This study investigated the wound-healing potential of hispolon, a polyphenolic pigment derived from medicinal mushrooms, under diabetic conditions using both in vitro and in vivo models. : In the in vitro assays, L929 fibroblast cells exposed to high glucose (33 mmol/L) were treated with hispolon at concentrations of 2.5, 5, 7.

View Article and Find Full Text PDF

Platelet-Rich Plasma (PRP) is a biological treatment widely used in regenerative medicine for its restorative capacity. Although PRP is typically applied at the time of obtention, long-term storage and preservation could enhance its versatility and clinical applications. The objective of this study was to evaluate the effect of long-term freezing on PRP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!