It is suggested that the widely reported biological synergism of a mixture of DNA-targeting aromatic drug molecules both in vivo and in vitro can be explained, in part, at the molecular level by competition between two basic mechanisms: the 'interceptor' (hetero-association between Drug1 and Drug2) and 'protector' mechanisms (complexation of Drug1 and Drug2 on DNA-binding sites). In the present work a complete analytical methodology has been developed to quantify these processes, providing an estimate of the relative importance of the interceptor/protector mechanisms using just a set of equilibrium association constants. The general methodology may be applied to other molecules with receptors for aromatic drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpc.2007.11.001DOI Listing

Publication Analysis

Top Keywords

biological synergism
8
synergism mixture
8
aromatic drugs
8
drug1 drug2
8
quantitation molecular
4
mechanisms
4
molecular mechanisms
4
mechanisms biological
4
mixture dna-acting
4
dna-acting aromatic
4

Similar Publications

Molecular recognition and detection of small bioactive molecules, like neurotransmitters, remain a challenge for chemists, whereas nature found an elegant solution in form of protein receptors. Here, we introduce a concept of a dynamic artificial receptor that synergically combines molecular recognition with dynamic imine bond formation inside a lipid nanoreactor, inducing a fluorescence response. The designed supramolecular system combines a lipophilic recognition ligand derived from a boronic acid, a fluorescent aldehyde based on push-pull styryl pyridine and a phenol-based catalyst.

View Article and Find Full Text PDF

Hepatic encephalopathy (HE) is a syndrome that arises from acute or chronic liver failure. This study was devised to assess the impact of a combination of boswellic acid (BA) and low doses of gamma radiation (LDR) on thioacetamide (TAA)-induced HE in an animal model. The effect of daily BA treatment (175 mg/kg body weight, for four weeks) and/or fractionated low-dose γ-radiation (LDR; 0.

View Article and Find Full Text PDF

Microbiota-derived proteins synergize with IL-23 to drive IL22 production in model type 3 innate lymphoid cells.

PLoS One

January 2025

Center for Inflammation, Immunity, & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America.

Microbiota-induced production of IL-22 by type 3 innate lymphoid cells (ILC3) plays an important role in maintaining intestinal health. Such IL-22 production is driven, in part, by IL-23 produced by gut myeloid cells that have sensed select microbial-derived mediators. The extent to which ILC3 can directly respond to microbial metabolites via IL-22 production is less clear, in part due to the difficulty of isolating and maintaining sufficient numbers of viable ILC3 ex vivo.

View Article and Find Full Text PDF

Androgen receptor (AR) signaling is a target in prostate cancer therapy and can be treated with non-steroidal anti-androgens (NSAA) including enzalutamide, and apalutamide for patients with advanced disease. Metastatic castration-resistant prostate cancer (mCPRC) develop resistance becomes refractory to therapy limiting patient overall survival. Darolutamide is a novel next-generation androgen receptor-signaling inhibitor that is FDA approved for non-metastatic castration resistant prostate cancer (nmCRPC).

View Article and Find Full Text PDF

Platinum chemotherapy is part of every second anticancer treatment regimen. However, its application is limited by severe side effects and drug resistance. The combination of platinum-based chemotherapeutics with EGFR inhibitors has shown remarkable synergism in clinical treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!