In vitro culture of bone marrow mesenchymal stem cells in rats and differentiation into retinal neural-like cells.

J Huazhong Univ Sci Technolog Med Sci

Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Published: October 2007

In order to study the in vitro culture and expansion of bone marrow mesenchymal stem cells in rats (rMSCs) and the possibility of rMSCs differentiation into retinal neural cells, the bone marrow-derived cells in SD rats were isolated and cultured in vitro. The retinal neural cells in SD rats were cultured and the supernatants were collected to prepare conditioned medium. The cultured rMSCs were induced to differentiate by two steps. Immunofluorescence method and anti-nestin, anti-NeuN, anti-GFAP and anti-Thy1.1 antibodies were used to identify the cells derived from the rMSCs. The results showed that the in vitro cultured rMSCs grew well and expanded quickly. After induction with two conditioned media, rMSCs was induced to differentiate into neural progenitor cells, then into retinal neural-like cells which were positive for nestin, NeuN, GFAP and Thy1.1 detected by fluorescence method. The findings suggested that rMSCs could be culture and expanded in vitro, and induced to differentiate into retinal neural-like cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11596-007-0531-1DOI Listing

Publication Analysis

Top Keywords

cells rats
16
retinal neural-like
12
neural-like cells
12
induced differentiate
12
cells
10
vitro culture
8
bone marrow
8
marrow mesenchymal
8
mesenchymal stem
8
stem cells
8

Similar Publications

Objective: Within the scope of this research, the long-term effects of experimental blunt head trauma on immature rats and MK-801 administered acutely after trauma on the brain tissue will be examined. In addition, the impact of trauma and MK-801 on Nestin and CD133, which are essential stem cells, will be evaluated by immunohistochemical and ELISA methods.

Methods: In this study, the contusion trauma model was used.

View Article and Find Full Text PDF

Objective: Polycystic ovary syndrome (PCOS) is a diverse condition with an unknown cause. The precise mechanism underlying ovulatory abnormalities in PCOS remains unclear. It is widely believed that malfunction of granulosa cells is the primary factor contributing to aberrant follicular formation in PCOS.

View Article and Find Full Text PDF

Accumulation of advanced oxidative protein products exacerbate satellite glial cells activation and neuropathic pain.

Mol Med

January 2025

Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China.

Background: Neuropathic pain (NP) is a debilitating condition caused by lesion or dysfunction in the somatosensory nervous system. Accumulation of advanced oxidation protein products (AOPPs) is implicated in mechanical hyperalgesia. However, the effects of AOPPs on NP remain unclear.

View Article and Find Full Text PDF

Photobiomodulation and aquatic training reduce TNF-α expression and enhance muscle fiber area in Wistar rats with compensatory hypertrophy.

Lasers Med Sci

January 2025

Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), 235/249 Vergueiro Street, Sao Paulo, SP, 01525000, Brazil.

This study aims to assess the effects of aquatic training (AT) and its combination with photobiomodulation (PBM) on cytokine synthesis and plantar muscle morphology during compensatory hypertrophy (H) in Wistar rats. H was induced by bilateral ablation of synergistic muscles, and PBM using a laser (780 nm). AT involved 60 min sessions, 5 times/week, for 7 and 14 days.

View Article and Find Full Text PDF

Pathological cardiac remodeling is a maladaptive response that leads to changes in the size, structure, and function of the heart. These changes occur due to an acute or chronic stress on the heart and involve a complex interplay of hemodynamic, neurohormonal and molecular factors. As a critical regulator of cell growth, protein synthesis and autophagy mechanistic target of rapamycin complex 1 (mTORC1) is an important mediator of pathological cardiac remodeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!