PEgr-Endostatin-EGFP plasmid was constructed to investigate its expression properties induced by ionizing irradiation and the effect of pEgr-Endostatin-EGFP gene-radiotherapy on melanoma tumor-bearing mice. The pEgr-Endostatin-EGFP plasmid was transfected into B16 cell line with liposome. The expression property of endostatin was investigated by RT-PCR and that of EGFP was detected by flow cytometry. Tumor-bearing mice were treated by the plasmid injection and 2 Gy X-irradiation of three fractions. Tumor growth was observed for 18 days after treatment. Change of tumor capillary formation was measured with histochemistry assay at the end of the experiment. The expression of GFP in B16 melanoma cells was detected after X-irradiation with 0.05-20 Gy. Time-course studies showed that the expression of GFP in B16 cells reached its peak at 8 h after irradiation with 2 Gy. The injection of pEgr-Endostatin-EGFP recombinant plasmid into the implanted B16 melanoma in C57BL/6J mice followed by local X-irradiation could significantly inhibit tumor growth with inhibition of intratumor micro-vessel density. The inhibitory effect of pEgr-Endostatin-EGFP gene-radiotherapy on the growth of B16 melanoma is correlated with the marked decrease of intratumoral vascularization. The present data point to the potential of an anti-angiogenic approach in gene-radiotherapy of cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00411-007-0144-x | DOI Listing |
Brief Bioinform
November 2024
College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China.
The role of cell-cell communications (CCCs) is increasingly recognized as being important to differentiation, invasion, metastasis, and drug resistance in tumoral tissues. Developing CCC inference methods using traditional experimental methods are time-consuming, labor-intensive, cannot handle large amounts of data. To facilitate inference of CCCs, we proposed a computational framework, called CellMsg, which involves two primary steps: identifying ligand-receptor interactions (LRIs) and measuring the strength of LRIs-mediated CCCs.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
Background: CD3 bispecific antibody (CD3 bsAb) therapy has become an established treatment modality for some cancer types and exploits endogenous T cells irrespective of their specificity. However, durable clinical responses are hampered by immune escape through loss of tumor target antigen expression. Induction of long-lasting tumor-specific immunity might therefore improve therapeutic efficacy, but has not been studied in detail yet for CD3 bsAbs.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
The goal of this paper is to discuss the role of ALDH isozymes in different cancers, review advances in ALDH1-targeting cancer therapies, and explore a mechanism that explains how ALDH expression becomes elevated during cancer development. ALDH is often overexpressed in cancer, and each isoform has a unique expression pattern and a distinct role in different cancers. The abnormal expression of ALDHs in different cancer types (breast, colorectal, lung, gastric, cervical, melanoma, prostate, and renal) is presented and correlated with patient prognosis.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA.
Immunotherapy, particularly that based on blocking checkpoint proteins in many tumors, including melanoma, Merkel cell carcinoma, non-small cell lung cancer (NSCLC), triple-negative breast (TNB cancer), renal cancer, and gastrointestinal and endometrial neoplasms, is a therapeutic alternative to chemotherapy. Immune checkpoint inhibitor (ICI)-based therapies have the potential to target different pathways leading to the destruction of cancer cells. Although ICIs are an effective treatment strategy for patients with highly immune-infiltrated cancers, the development of different adverse effects including cutaneous adverse effects during and after the treatment with ICIs is common.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 119991 Moscow, Russia.
In this work, a series of boronated amidines based on the -dodecaborate anion and amino acids containing an amino group in the side chain of the general formula [BHNHC(NH(CH)CH(NH)COOH)CH], where n = 2, 3, 4, were synthesized. These derivatives contain conserved α-amino and α-carboxyl groups recognized by the binding centers of the large neutral amino acid transporter (LAT) system, which serves as a target for the clinically applied BNCT agent para-boronophenylalanine (BPA). The paper describes several approaches to synthesizing the target compounds, their acute toxicity studies, and tumor uptake studies in vivo in two tumor models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!