ER stress can cause hepatic insulin resistance and steatosis. Increased VLDL secretion could protect the liver from ER stress-induced steatosis, but the effect of lipid-induced ER stress on the secretion of VLDL is unknown. To determine the effect of lipids on hepatic ER stress and VLDL secretion, we treated McA-RH7777 liver cells with free fatty acids. Prolonged exposure increased cell triglycerides, induced steatosis, and increased ER stress. Effects on apoB100 secretion, which is required for VLDL assembly, were parabolic, with moderate free fatty acid exposure increasing apoB100 secretion, while greater lipid loading inhibited apoB100 secretion. This decreased secretion at higher lipid levels was due to increased protein degradation through both proteasomal and nonproteasomal pathways and was dependent on the induction of ER stress. These findings were supported in vivo, where intravenous infusion of oleic acid (OA) in mice increased ER stress in a duration-dependent manner. apoB secretion was again parabolic, stimulated by moderate, but not prolonged, OA infusion. Inhibition of ER stress was able to restore OA-stimulated apoB secretion after prolonged OA infusion. These results suggest that excessive ER stress in response to increased hepatic lipids may decrease the ability of the liver to secrete triglycerides by limiting apoB secretion, potentially worsening steatosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2104481 | PMC |
http://dx.doi.org/10.1172/JCI32752 | DOI Listing |
Int J Mol Sci
December 2024
Centre of Cardiovascular Diseases and Internal Medicine, Borsod-Abauj-Zemplen County Central Hospital and University Teaching Hospital, Szentpéteri kapu 72-76, 3526 Miskolc, Hungary.
Coenzyme Q10 (CoQ10) plays a crucial role in facilitating electron transport during oxidative phosphorylation, thus contributing to cellular energy production. Statin treatment causes a decrease in CoQ10 levels in muscle tissue as well as in serum, which may contribute to the musculoskeletal side effects. Therefore, we aimed to assess the effect of newly initiated statin treatment on serum CoQ10 levels after acute ST-elevation myocardial infarction (STEMI) and the correlation of CoQ10 levels with key biomarkers of subclinical or clinically overt myopathy.
View Article and Find Full Text PDFBiomolecules
December 2024
Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece.
Cardiovascular disease (CVD) remains a leading global health concern, with atherosclerosis being its principal cause. Standard CVD treatments primarily focus on mitigating cardiovascular (CV) risk factors through lifestyle changes and cholesterol-lowering therapies. As atherosclerosis is marked by chronic arterial inflammation, the innate and adaptive immune systems play vital roles in its progression, either exacerbating or alleviating disease development.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand.
The accumulation of oxidized low-density lipoprotein (oxLDL) in macrophages leads to the formation of foam cells and atherosclerosis development. Reducing the uptake of oxLDL in macrophages decreases the incidence and progression of atherosclerosis. Four distinct single-strand DNA sequences, namely, AP07, AP11, AP25, and AP29, were selected that demonstrated specific binding to distinct regions of oxidized apolipoprotein B100 (apoB100; the protein component of oxLDL) with low HDOCK scores.
View Article and Find Full Text PDFNature
December 2024
Structural Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
Apolipoprotein B100 (apoB100) is a structural component of low-density lipoprotein (LDL) and a ligand for the LDL receptor (LDLR). Mutations in apoB100 or in LDLR cause familial hypercholesterolaemia, an autosomal dominant disease that is characterized by a marked increase in LDL cholesterol (LDL-C) and a higher risk of cardiovascular disease. The structure of apoB100 on LDL and its interaction with LDLR are poorly understood.
View Article and Find Full Text PDFNature
December 2024
Department of Physics, University of Missouri, Columbia, MO, USA.
Low-density lipoprotein (LDL) has a central role in lipid and cholesterol metabolism and is a key agent in the development and progression of atherosclerosis, the leading cause of mortality worldwide. Apolipoprotein B100 (apoB100), one of the largest proteins in the genome, is the primary structural and functional component of LDL, yet its size and complex lipid associations have posed major challenges for structural studies. Here we present the structure of apoB100 resolved to subnanometre resolution in most regions using an integrative approach of cryo-electron microscopy, AlphaFold2 and molecular-dynamics-based refinement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!