It has been known for some time that the degree of polarization of a light beam may change on propagation, even in free space. In this Letter we derive sufficiency conditions for the degree of polarization of a beam generated by a uniformly polarized stochastic, electromagnetic source of a wide class to be the same throughout the far zone and in the source plane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.32.003400 | DOI Listing |
Appl Biochem Biotechnol
January 2025
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
As a novel protein post-translational modification, lysine succinylation is widely involved in metabolism regulation. To describe succinylated lysine's physiological functions and distribution patterns in Saccharopolyspora erythraea, a large and global protein succinylome was identified in a hypersuccinylated strain E3ΔsucC, using high-resolution 4D label-free mass spectrometry. Bioinformatic analysis was conducted to examine the succinylated proteins further in this study.
View Article and Find Full Text PDFJ Mol Model
January 2025
College of Safety Science and Engineering, Nanjing Tech University, Nanjing, 210009, China.
Context: This article mainly studies three isomers of CHNO, namely 5-methyl-3,4-dinitro-1- (trinitromethyl) -1H pyrazole (1), 4-methyl-3,5-dinitro-1- (trinitromethyl) -1H pyrazole (2), and 3,5-bis (dinitromethyl) -4-nitro-1H-pyrazole (3). These three substances are excellent candidates for energetic materials, but their properties under external electric fields (EEF) have not been studied. Therefore, this article studied the properties of three isomers under EEF using density functional theory (DFT), and conducted statistical analysis on the obtained data, including the molecular structure, frontier molecular orbitals, surface electrostatic potential, and nitrate charge of the three isomers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305.
A central paradigm of nonequilibrium physics concerns the dynamics of heterogeneity and disorder, impacting processes ranging from the behavior of glasses to the emergent functionality of active matter. Understanding these complex mesoscopic systems requires probing the microscopic trajectories associated with irreversible processes, the role of fluctuations and entropy growth, and the timescales on which nonequilibrium responses are ultimately maintained. Approaches that illuminate these processes in model systems may enable a more general understanding of other heterogeneous nonequilibrium phenomena, and potentially define ultimate speed and energy cost limits for information processing technologies.
View Article and Find Full Text PDFNano Lett
January 2025
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
In van der Waals (vdW) architectures of transition metal dichalcogenides (TMDCs), the coupling between interlayer exciton and quantum degrees of freedom opens unprecedented opportunities for excitonic physics. Taking the MoSe homobilayer as representative, we identify that the interlayer registry defines the nature and dynamics of the lowest-energy interlayer exciton. The large layer polarization () is proved, which ensures the formation of layer-resolved interlayer excitons.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
State Key Laboratory of Millimeter-Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China.
This paper presents a D-band dual linear-polarized wideband high-gain reflectarray (RA) antenna using low-temperature co-fired-ceramic (LTCC) technology. The proposed element comprises a dual-polarized magnetoelectric (ME) dipole and a multilayer slot-coupling substrate-integrated waveguide (SIW) phase-delay structure, which are organized in accordance with the receiving/reradiating (R/R) principle. The coverage of phase shifts for both orthogonal polarizations is set to be greater than 360 degrees by varying the length of the phase-delay structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!