We demonstrate a simple scheme for capturing the temporal waveforms of a freely propagating terahertz electromagnetic transient in a single shot. The method relies on electro-optic sampling in a noncollinear geometry for the terahertz radiation and the visible probe beam, coupled with multichannel detection. The approach provides time resolution that is comparable to that of conventional electro-optic sampling measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.25.000426DOI Listing

Publication Analysis

Top Keywords

electro-optic sampling
12
terahertz electromagnetic
8
single-shot measurement
4
measurement terahertz
4
electromagnetic pulses
4
pulses electro-optic
4
sampling demonstrate
4
demonstrate simple
4
simple scheme
4
scheme capturing
4

Similar Publications

Cavity electrodynamics offers a unique avenue for tailoring ground-state material properties, excited-state engineering, and versatile control of quantum matter. Merging these concepts with high-field physics in the terahertz (THz) spectral range opens the door to explore low-energy, field-driven cavity electrodynamics, emerging from fundamental resonances or order parameters. Despite this demand, leveraging the full potential of field-driven material control in cavities is hindered by the lack of direct access to the intra-cavity fields.

View Article and Find Full Text PDF

Photo-induced force microscopy (PiFM) uses laser modulation at the atomic force microscope cantilever's typical mechanical resonance frequency, to encode the material near-field response in the probes nanomechanics. While this technique offers the simplicity gained by mechanical detection, it can be challenging for hyperspectral measurements. Modulation in the visible and near-infrared ranges, often involves using acousto-optic modulators that introduce a wavelength-dependent laser steering, detrimental for spectroscopic purposes.

View Article and Find Full Text PDF

Mid-to-far-infrared (IR) spectral content is recorded using the novel self-balanced and self-phase-corrected electro-optical (EO) sampling arrangement. Self-balancing guarantees that the electric field emerging from the EO crystal yields a signal of zero via a Wollaston prism and balanced photodetector (i.e.

View Article and Find Full Text PDF

We report a nonlinear terahertz (THz) detection device based on a metallic bull's-eye plasmonic antenna. The antenna, fabricated with femtosecond laser direct writing and deposited on a nonlinear gallium phosphide (GaP) crystal, focuses incoming THz waveforms within the sub-wavelength bull's eye region to locally enhance the THz field. Additionally, the plasmonic structure minimizes diffraction effects allowing a relatively long interaction length between the transmitted THz field and the co-propagating near-infrared gating pulse used in an electro-optic sampling configuration.

View Article and Find Full Text PDF

Optical-heterodyne interferometry enables high-precision measurement of displacement, surface topography, and retardation via the introduction of an optical frequency shift. However, certain types of frequency-shifters including rotating half-waveplates may induce repetitive intensity variation, resulting in precision degradation. To address this issue, the heterodyne signals are split at the local minima during analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!