A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Postnatal phencyclidine administration selectively reduces adult cortical parvalbumin-containing interneurons. | LitMetric

Postnatal phencyclidine administration selectively reduces adult cortical parvalbumin-containing interneurons.

Neuropsychopharmacology

Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555-1031, USA.

Published: September 2008

Transient postnatal NMDA receptor blockade by phencyclidine (PCP), ketamine, or MK-801 induces developmental neuroapoptosis and adult behavioral deficits, which resemble abnormal human behaviors typically present in schizophrenia. This study tested the hypothesis that PCP-induced developmental apoptosis causes a specific deficit of GABAergic interneurons containing parvalbumin (PV), calretinin (CR), or calbindin (CB). Young adult (PND56) rats that were given a single dose of PCP (10 mg/kg) on PND7 exhibited no densitometric change of either CR or CB neurons in any brain region studied, but demonstrated a selective deficit of PV-containing neurons in the superficial layers (II-IV) of the primary somatosensory (S1), motor (M), and retrosplenial cortices, but not in the striatum (CPu) or hippocampus. Further, CR and CB neurons, which were expressed at the time of PCP administration, showed no colocalization with cellular markers of apoptosis (terminal dUTP nick-end labeling (TUNEL) of broken DNA or cleaved caspase-3), indicating that CR- and CB-containing neurons were protected from the toxic effect of PCP and survived into adulthood. This suggests that the deletion of PV neurons occurred during development, but cleaved caspase-3 showed no colocalization with BrdU, a specific marker of S-phase proliferation. These data suggest that the loss of PV-containing neurons was not due to an effect of PCP on proliferating neurons, but rather an effect on post-mitotic neurons. The developmental dependence and neuronal specificity of this effect of PCP provides further evidence that this model may be valuable in exploring the pathophysiology of schizophrenia.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.npp.1301647DOI Listing

Publication Analysis

Top Keywords

neurons
8
pv-containing neurons
8
cleaved caspase-3
8
pcp
6
postnatal phencyclidine
4
phencyclidine administration
4
administration selectively
4
selectively reduces
4
reduces adult
4
adult cortical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!