PPAR-gamma regulates osteoclastogenesis in mice.

Nat Med

Howard Hughes Medical Institute, Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA.

Published: December 2007

Osteoclasts are bone-resorbing cells derived from hematopoietic precursors of the monocyte-macrophage lineage. Regulation of osteoclast function is central to the understanding of bone diseases such as osteoporosis, rheumatoid arthritis and osteopetrosis. Although peroxisome proliferator-activated receptor-gamma (PPAR-gamma) has been shown to inhibit osteoblast differentiation, its role, if any, in osteoclasts is unknown. This is a clinically crucial question because PPAR-gamma agonists, "such as thiazolidinediones-" a class of insulin-sensitizing drugs, have been reported to cause a higher rate of fractures in human patients. Here we have uncovered a pro-osteoclastogenic effect of PPAR-gamma by using a Tie2Cre/flox mouse model in which PPAR-gamma is deleted in osteoclasts but not in osteoblasts. These mice develop osteopetrosis characterized by increased bone mass, reduced medullary cavity space and extramedullary hematopoiesis in the spleen. These defects are the result of impaired osteoclast differentiation and compromised receptor activator of nuclear factor-kappaB ligand signaling and can be rescued by bone marrow transplantation. Moreover, ligand activation of PPAR-gamma by rosiglitazone exacerbates osteoclast differentiation in a receptor-dependent manner. Our examination of the underlying mechanisms suggested that PPAR-gamma functions as a direct regulator of c-fos expression, an essential mediator of osteoclastogenesis. Therefore, PPAR-gamma and its ligands have a previously unrecognized role in promoting osteoclast differentiation and bone resorption.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nm1672DOI Listing

Publication Analysis

Top Keywords

osteoclast differentiation
12
ppar-gamma
8
ppar-gamma regulates
4
regulates osteoclastogenesis
4
osteoclastogenesis mice
4
mice osteoclasts
4
osteoclasts bone-resorbing
4
bone-resorbing cells
4
cells derived
4
derived hematopoietic
4

Similar Publications

Osteointegration, the effective coupling between an implant and bone tissue, is a highly intricate biological process. The initial stages of bone-related immunomodulation and cellular colonization play crucial roles, but have received limited attention. Herein, a novel supramolecular co-assembled coating of strontium (Sr)-doped metal polyphenol networks (MPN) modified with c(RGDfc) is developed and well-characterized, for eliciting an early immunomodulation and cellular colonization.

View Article and Find Full Text PDF

This study aimed to investigate the potential role of Colquhounia Root Tablets against bone destruction in rheumatoid arthritis(RA) and its molecular mechanism. The study used ultra-performance liquid chromatography-mass spectrometry to analyze the major components of Colquhounia Root Tablets and predicted its candidate target gene set based on the major components. The key targets of RA bone destruction were obtained through GeneCards and the Database of Genetics and Medical Literature(OMIM), protein-protein interaction(PPI) network was constructed, and the key targets were identified by topological analysis.

View Article and Find Full Text PDF

Ligustilide, a phthalide compound extracted from Umbelliferae plants such as Angelica sinensis and Ligusticum chuanxiong, has been proven to possess various pharmacological activities, such as anti-inflammatory, anti-tumor, anti-atherosclerosis, anti-ischemic stroke injury, and anti-Alzheimer's disease properties. In recent years, it has shown great potential, particularly in the treatment of locomotor system diseases. Studies have shown that ligustilide has significant therapeutic effects on various locomotor system diseases, including osteoporosis, osteoarthritis, femoral head necrosis, osteosarcoma, and muscle aging and injury.

View Article and Find Full Text PDF

The bone is a highly dynamic organ that undergoes continuous remodeling through an intricate balance of bone formation and degradation. Hyperactivation of the bone-degrading cells, the osteoclasts (OCs), occurs in disease conditions and hormonal changes in females, resulting in osteoporosis, a disease characterized by altered microarchitecture of the bone tissue, and increased bone fragility. Thus, building robust assays to quantify OC resorptive activity to examine the molecular mechanisms underlying bone degradation is critical.

View Article and Find Full Text PDF

Dectin-2 depletion alleviates osteoclast-induced bone loss in periodontitis via Syk/NOX2/ROS signaling.

Free Radic Biol Med

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University. Electronic address:

Periodontitis is the sixth most common disease worldwide and is closely associated with various systemic diseases, impacting overall health. It is characterized by the over-differentiation and activity of osteoclasts, leading to increased bone resorption and subsequent bone loss. Current treatments for bone loss are not ideal, highlighting the need for new targeted therapeutic strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!